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Abstract

High fidelity, robust numerical schemes for compressible multi-fluid dynamics are
critical for advancing numerous active research fields including high-speed reactive
turbulence, inertial confinement fusion, supernova explosions, and shock/ultrasound-
induced bubble oscillations in medical diagnosis and therapy. Many computational
methods have been developed to solve these challenging problems; however, there are
few, if any, codes that demonstrate sufficient rigor and efficiency to successfully simu-
late the multi-dimensional compressible flows relevant in many cutting edge biomed-
ical, sustainable energy, and defense technologies. Within the landscape of numerical
methods, high-order, finite-difference schemes are unmatched in their simplicity and
demonstrate optimal performance in terms of accuracy per CPU cost, making them
a compelling option for these applications.

Hyperbolicity, or the retention of a real valued sound speed, is a required component
for a robust computational scheme. Failure to maintain the positivity of physical
values such as density and the square of sound speed causes the blow-up of numerical
simulations. In the context of two-fluid compressible dynamics, strong shocks and
very large interfacial discontinuities are common features that can easily induce pos-
itivity related failure in a simulation.

The objective of this work is to enhance a high-order, primitive variable based,
weighted essentially non-oscillatory (WENO) finite difference scheme by adding a
positivity-preserving algorithm to the method. This is accomplished by incorporat-
ing a flux limiting technique that locally adapts high-order fluxes towards first-order
fluxes to retain the physical bounds of the system without general loss of high-order
convergence. The proposed scheme is equally valid for both high-order linear (upwind
or central) reconstruction and for high-order nonlinear reconstruction based on the
WENO scheme.

This positivity-preserving scheme has been implemented up through 11th order in
one and two dimensions for a two-fluid compressible model, and several test prob-
lems have been conducted to validate its performance. The scheme has been found
to effectively retain high-order accuracy while allowing for the simulation of several
challenging problems that otherwise could not be successfully solved using the base
scheme.

For compressible single-fluid flow, the developed scheme is believed to be the first
application of the parameterized, flux-limiting positivity approach to any finite differ-
ence scheme of accuracy order greater than five. Additionally, the scheme represents
the first demonstration of a high-order, flux-limiting, finite difference solver for two-
fluid compressible flows. Owing to the inherent efficiency of finite differences and the
new robust positivity-preserving quality, the scheme is well suited for modeling the
challenging physics associated with problems such as ultrasound activated targeted
drug delivery, air/fuel mixing in supersonic flows, and collapse of cavitation bubbles.
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Chapter 1

Introduction

1.1 A Compressible Two-Fluid Model

Conservation laws are fundamental principles that form the basis for modeling

numerous physical processes. In the simplest terms, a conservation law enforces

the idea that, in a closed system, the overall quantity of some conserved property

can only change by adding or removing portions of this property from the system.

Mathematically, a conservation law is expressed as

∂u(x, t)

∂t
+

∂

∂x
[f(u(x, t))] = 0, (1.1)

where u(x, t) is a function that describes the distribution of some conserved physical

property in space and time, and f is a function giving the flux of the conserved

property. In the context of gas dynamics, the conservation of mass, momentum, and

energy in one spatial dimension form a set of three coupled equations known as the

Euler equations of gas dynamics. These three equations together with the ideal gas

equation of state (p = eρ(γ− 1)) govern the transport of mass, momentum, and total

energy for a compressible fluid. The Euler equations are expressed as

∂ρ

∂t
+

∂

∂x
[ρv] = 0 (1.2)

∂

∂t
[ρv] +

∂

∂x

[
ρv2 + p

]
= 0 (1.3)

∂

∂t

[
ρ(e+ v2

2
)
]

+
∂

∂x

[(
ρe+ ρv2

2
+ p
)
v
]

= 0, (1.4)
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where ρ, v, p, and e are density, velocity, pressure, and internal energy, respectively.

Numerical solutions to these equations allow for the simulation of complex, single-

fluid gas dynamics with discontinuous features. In order to extend the model to

support multi-fluid dynamics, we require some function that describes the distribution

of the separate fluids in the flow field at any given time. Restricting ourselves to

immiscible flow, this can be accomplished by adding an advection equation that

evolves the location of the fluid interfaces [30].

The advection equation, also known as the transport equation, models the distri-

bution of some function being carried by a bulk velocity field. For our application, we

seek to model the location of a two-fluid interface described by some interface cap-

turing function, Γ1, as it is advected by the local fluid velocity v. Thus, to support

two-fluid dynamics, we can append the following equation to the Euler system

∂Γ1

∂t
+ v

∂

∂x
[Γ1] = 0. (1.5)

The interface capturing function, Γ1, can be arbitrarily defined as any function of the

material properties (e.g. specific heat ratio) that can sufficiently describe the fluid at

any point in the computational domain. For the case of two ideal gasses, the most

obvious choice for this function would be the specific heat ratio (γ). As an example,

air (γ = 1.4) and helium (γ = 1.67) have different values for the specific heat ratio, so

γ, by itself, could fully partition the domain into separate regions of air and helium.

However, it is well known that the interface capturing function must be selected with

care to avoid spurious oscillations near the interface. Specifically, we use the form

of (1.6) which has been shown to give non-oscillatory solutions for linear advection

[42, 30]

Γ1 =
1

γ − 1
. (1.6)

Even with the addition of (1.5), the model remains restricted to ideal gasses. To



3

extend the model to support liquids, we must utilize a different equation of state.

The stiffened gas equation of state (1.7) is commonly used as a simple, generalized

form of the ideal gas law [42]

p = (γ − 1)ρe− γΠ, (1.7)

where for a liquid, γ and Π are empirical parameters calculated by fitting the stiffened

gas model to data from a Hugoniot curve [42, 27]. For all ideal gasses, γ corresponds

to the specific heat ratio, and Π = 0. The inclusion of this second fluid parameter ne-

cessitates an additional interface capturing function and its linear advection equation

∂Γ2

∂t
+ v

∂

∂x
[Γ2] = 0. (1.8)

Here, the interface capturing function is defined as

Γ2 =
γΠ

γ − 1
. (1.9)

The necessity of the specific forms of (1.6) and (1.9) for the two interface capturing

functions can be easily demonstrated numerically by solving for the passive advection

of an isolated material interface. To this end, Figures 1.1 and 1.2 show pressure and

specific heat ratio solutions for a water/air interface at atmospheric conditions being

advected by a constant fluid velocity of 10 m/s. A 5th-order finite difference scheme

was used, and the solutions are shown after a single Runge-Kutta time integration

step. In each figure, the left panel gives solutions when the equation of state order

parameters (γ and Π) were used directly as the interface capturing functions, and the

right panel shows the results when (1.6) and (1.9) were utilized.



4

80

100

120

140

p 
[k

Pa
]

Incorrect Formulation: Γ1 = γ, Γ2 = Π

70

80

90

100

110

120

130

140

Correct Formulation: Γ1 = 1
γ− 1 , Γ2 = γΠ

γ− 1

0.0 0.2 0.4 0.6 0.8 1.0
x

2

4

6

γ

v= 10 m
s

Water Air

0.0 0.2 0.4 0.6 0.8 1.0
x

2

3

4

5

6

v= 10 m
s

Water Air

Advected Water/Air Interface: Order = 5, N = 100, CFL=0.4, One Time Step

Pressure γ

Figure 1.1: Advected water/air interface for different interface capturing functions

On the left panel, corresponding to the case where the order parameters were used

directly, large, unphysical jumps are clearly seen in the pressure trace. However, as

observed on the right-hand panel, the solutions obtained using the correct interface

capturing functions are free of these spurious oscillations. Furthermore, as evidenced

by Figure 1.2, these errors persist even with grid refinement.
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To summarize the model, taking xi = [x, y, z]ᵀ as the spatial coordinate, E =

ρ
(
e+

vivj
2
δij
)

as the total energy, and vi as the velocity vector, the complete set of

equations for multi-fluid compressible flow in three spatial dimensions are

∂ρ

∂t
+

∂

∂xi
[ρvi] = 0 (1.10)

∂

∂t
[ρvi] +

∂

∂xi
[(ρvivj) + pδij] = 0 (1.11)

∂E

∂t
+

∂

∂xi
[(E + p)vi] = 0 (1.12)

∂Γ1

∂t
+ vi

∂Γ1

∂xi
= 0 (1.13)

∂Γ2

∂t
+ vi

∂Γ2

∂xi
= 0. (1.14)

1.2 Applications

The applications of compressible multi-phase fluid flow span an extremely diverse

range of active research fields and engineering disciplines. Consequently, the develop-

ment of efficient, robust numerical simulations has potential to impact the furtherance

of numerous different technologies and theories.

1.2.1 Biomedical

Equations (1.10) – (1.14) form a model that supports multi-dimensional, multi-

species flows comprised of vapor and/or liquid. For instance, with this model, we

could simulate a shock wave traveling in liquid water as it interacts with an air

bubble suspended in the liquid.

The study of such shock/bubble interactions is highly applicable to the biomedical

field. Shock induced lithotripsy has been used since the 1980’s as a non-intrusive

treatment to break up kidney stones by targeting the calculi with high-energy shock

waves generated by lithotripter. Most modern lithotripters utilize an electromagnetic

or piezoelectric driver to produce a focused pulse with a maximum pressure jump of
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about 40MPa [12]. Figure 1.3 shows photoelastic images from a laboratory experiment

carried out utilizing a standard medical lithotripter to target a model stone.

Figure 1.3: Focused shock wave interacting with a cylindrical epoxy sample. Reproduced
with permission from Xi and Zhong [55]

The first image in the upper left shows the incident shock wave approaching the

model stone from right to left. Subsequent images along the first and second row

show the shock wave traveling through the stone and the resulting stress field. In

the third row, cavitation bubbles are observed as dark spots collecting on the stone’s

surface. These cavitation bubbles are generated because the wave forms produced

by lithotripters contain a tensile phase in the wake of the shock front. This region

of negative pressure (typically around −10MPa) is well known to cause cavitation

within urine and tissue [12]. The collapse of these cavitation bubbles generates very

high pressure and is believed to be a primary mechanism in breaking apart stones

[12, 20]. However, the destructive power of cavitation bubbles may also cause serious

collateral damage to tissue and blood vessels. [29, 20].

In addition to these treatments, recent research has identified acoustic droplet

vaporization as a potential mechanism for targeted drug delivery [53, 40, 37]. The

approach involves transporting a drug encased in a lipid or polymeric droplet and
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using ultrasound pulses to rupture the shell, releasing the drug at the targeted cells

[48]. A similar technique has been proposed as a means of blocking blood supply to

cancerous tumors by acoustically vaporizing perfluorocarbon droplets [35, 14]. Each

of these treatments involve the precise usage of acoustic waves interacting with small

bubbles immersed in fluid or tissue, and the development of safe, effective procedures

can be augmented by the usage of high-fidelity numerical simulations.

1.2.2 Sustainable Energy

The general case of shock/interface interaction also finds application outside the

biomedical industry. The so-called Richtmyer-Meshkov instability occurs when a

shock wave impinges upon the interface of two fluids of different densities. The result

is the impulsive acceleration of the fluids and the development of local turbulence

[41, 36]. Accurate modeling of these instabilities is very relevent within the nu-

clear energy field. Specifically, inertial confinement fusion (ICF) requires the rapid

compression and heating of a fuel pellet by way of concentrated laser beams. This

process forms shockwaves which generate Richtmyer-Meshkov instabilities inducing

undesired mixing within the fusion fuel pellet, significantly reducing the net energy

output [8, 52]. Novel techniques for attenuating these instabilities is an active area

of research [1] that requires accurate modeling of the small-scale interfacial features

associated with shock/bubble interactions.

1.2.3 Propulsion

The scramjet engine was initially theorized in the 1950s as an efficient propul-

sion system for hypersonic aircraft [15]. It is unique among air breathing engines in

that fuel injection and combustion occur in supersonic flow resulting in very short

timescales for achieving sufficient fuel-oxidizer mixing [43, 33].

By utilizing various flow control and injection techniques, Richtmyer-Meshkov
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instability can be used to promote more complete fuel-oxidizer mixing in scramjets [58,

59]. Designing such systems is very challenging as the relevent physics include high

Mach shocks interacting with two or more fluids of differing densities and properties.

High-fidelity, rigorous numerical simulations serve as an invaluable tool for building

broader understanding of these phenomena and informing engineering design.

1.2.4 Volcanology

Vulcanian eruptions form a specific class of unsteady volcanic activity character-

ized by the rapid decompression of a vertical magma-filled channel [10, 11]. These

eruptions are usually short lived lasting less than a few minutes and are typically

preceded by the sudden failure of the containing structure that seals the channel

from atmospheric pressure. The dynamics of a Vulcanian eruption consist of a high

pressure shock wave propagating from the vent into the atmosphere followed by the

expulsion of a gas/magma particle mixture. Additionally, an expansion wave travels

down the channel away from the vent triggering a pyroclast producing fragmentation

wave. Because the resulting solid particles are very small (about 1mm in diameter),

these eruptions can be modeled using the compressible flow equations under the as-

sumption that the pyroclastic particles are accelerated by the bulk velocity of an ideal

gas [9, 10]. Such numerical simulations can provide insight into key variables such as

plume height, velocity, temperature, and total mass erupted, giving researchers useful

tools to assess the scope and potential hazards of volcanic events.

1.3 Numerical Design

When modeling any physical process, it is vital that the solution method retain

the physical bounds of the system. For the case of the multi-fluid compressible flow,

several phenomena pose specific challenges to numerical methods. The presence of

both shock and fluid interface discontinuities is inherent, and any solution method
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must be able to accurately capture these features without unphysical distortions.

It is well known that simple first order finite difference or finite volume schemes

can capture shock discontinuities without spurious oscillation; however, their large

dissipative error, which is inherent in low-order approximations, renders the first-

order schemes prohibitively expensive for many applications, especially for problems

in multi-space dimensions [26, 45]. A demonstration of this provided in Figure 1.4.

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
x

0.0

0.2

0.4

0.6

0.8

1.0

u

Advection Equation, tmax=4, u(x, 0) = sin2(πx− sin(πx)
π )

5th Order
N=50
1st Order
 N=50 
1st Order
N=1600
E act Solution

Figure 1.4: Comparison of first and fifth order finite difference schemes for advection
equation with continuous solution

This plot shows a fifth order finite difference solution, as well as two 1st order

solutions to the linear advection equation (ut + ux = 0) for a smooth initial condi-

tion. Note that the 1st order scheme required 32 times more grid points to achieve

accuracy approaching that of the 5th order scheme. Table 1.3 quantifies the superior

performance of the high-order scheme in terms of accuracy per CPU time.

Table 1.1: Performance comparison for first and fifth order schemes

First Order Fifth Order

N=1600 Grid Points N=50 Grid Points

L∞ Error % 4.86% 0.13%

CPU Time [sec] 0.32 s 0.20 s



10

It should be noted that this was a very simple problem with smooth, low amplitude

features; even so, the higher order scheme was significantly more efficient. With

more challenging problems containing features such as shocks and high-frequency

oscillations, the benefits of high-order methods are even more pronounced [45, 44].

Given the greater efficiency of high-order methods, it is evident that high-order

shock capturing schemes are desirable; unfortunately, simple high-order schemes are

entirely unable to handle discontinuities. Regardless of grid refinement, they suffer

from spurious oscillations near sharp features. The so-called Gibbs phenomena [19, 24]

is demonstrated in Figure 1.5, which shows 7th order finite difference solutions for

the linear advection of a discontinuous function.

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
x

0.0

0.2

0.4

0.6

0.8

1.0

u

High Order Solutions for Advected S uare Pulse - Order=7, tmax=2

Grid Points
N=50
N=100
N=200
N=400
N=1600
Exact Solution

Figure 1.5: Demonstration of Gibbs phenomena for 7th order solutions to an advected
square pulse

To overcome this challenge, numerous high-order schemes have been developed. In

particular, the WENO (weighted essentially non-oscillatory) schemes first introduced

by Liu, Osher, and Chan [34] and later improved by Jiang and Shu [26] have proven

very successful at providing high-order convergence in smooth regions while avoiding

spurious oscillations at discontinuities. The WENO method is a high-order, nonlinear

reconstruction technique that has been applied to various finite difference [45] and

finite volume schemes [44]. In this work, we pursue a finite difference method and
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build upon the scheme proposed by Shahbazi [45] who demonstrated the superior

efficiency and simplicity of finite differences applied to complex two-fluid and two-

phase flow models and, owing to their optimal efficiency, noted their potential to be

extended to three spatial dimensions.

For an ideal gas, alongside non-oscillatory shock/interface capturing, it is neces-

sary for a numerical method to enforce certain physical limits in the solution, namely

the positivity of pressure and density. If either of these variables was to obtain a

value below zero, this would imply a complex value for the sound speed
(
c =

√
γp
ρ

)
leading to the breakdown of the simulation. For the two-phase model, the physical

bounds deviate slightly from the ideal gas case as it can be shown that this model, to

some degree, supports negative pressure values [47]. In particular, under the stiffened

gas equation of state, the expression for sound speed becomes

c =

√
γ(p+ Π)

ρ
. (1.15)

Thus, for the model described in (1.10) – (1.14), the required positivity conditions

become ρ > 0 and p + Π > 0. The positivity of these variables is guaranteed (under

a CFL condition and under a concavity condition for the material parameters γ

and Π) only for the first order scheme [47, 46]; it is not guaranteed for high-order

solutions — even for essentially non-oscillatory methods such as the WENO scheme.

In numerous cases, guaranteed positivity preservation is not required of the numerical

procedure as the physics do not generate low enough pressure and density values

to cause issue. However, with many problems — particularly those involving very

large discontinuities — such as liquid/air shock bubble interaction, absolute positivity

preservation is essential to prevent the simulation from crashing [44].
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1.4 Outline and Objectives

In this thesis, we will build upon the high-order finite difference WENO scheme

developed by Shahbazi [45] by incorporating a flux-limiting positivity preservation

method based upon the works of Xu [57] and Xiong et al. [56]. In Chapter 2, we

provide a review of the finite difference WENO scheme. Chapter 3 discusses the

application of the flux-limiting approach to our finite difference scheme and considers

the extension of the method to the two-fluid model. Chapter 4 gives verification for

the scheme by presenting several convergence studies and demonstrating its ability

to solve several challenging test problems. Finally, Chapter 5 will provide closure by

summarizing findings and identifying relevant future work.

The specific objectives of this thesis are as follows:

• Implement the finite difference WENO scheme of Shahbazi [45] for the two-fluid

model of (1.10) – (1.14) in one and two spatial dimensions up to and including

11th order.

• Apply the flux-limiting positivity-preserving framework from [57, 56] to this

finite difference scheme in one and two dimensions.

• Verify the performance of the new positivity-preserving scheme.
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Chapter 2

Theory

This chapter provides an overview of high-order WENO methods. The standard

WENO framework is reviewed, and the specifics unique to our finite difference method

are discussed.

2.1 Discretization

To simplify the description of the numerical scheme, let us begin by focusing upon

the one-dimensional conservation law with u(x, t) being the conserved variable and

f(u(x, t)) being the flux function of the conserved variable. The framework developed

here is easily extended to the two-fluid system of (1.10) – (1.14), since we are simply

dealing with five coupled conservation laws of the form

∂u

∂t
+
∂f(u)

∂x
= 0. (2.1)

Our goal is to obtain high-order, non-oscillatory approximations to the spatial deriva-

tive term. To begin, we consider the discrete form of (2.1) defined on a grid of N

points where xi ∈ {x0, x1, x2, . . . xN−2, xN−1}, h is the constant step size between each

point, and τ is the step size in time. We can denote the solution at a particular point

xi and time tn as uni .

Figure 2.1: Schematic showing a computational grid
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The starting point of the numerical scheme is to produce a polynomial reconstruc-

tion of u(x, t) at the so-called “cell boundary points”. This notion of a computational

cell is central to non-oscillatory finite difference/volume schemes. We can think of

each point xi in the discrete domain as the center of a small volume or “cell” in which

the midpoints shared between adjacent xi’s define the cell boundaries. In Figure 2.2,

we define the cell Ij as consisting of the “cell-center” value xi, the left cell bound-

ary xi− 1
2
, and the right cell boundary xi+ 1

2
. In the most general sense, the WENO

procedure involves building a high-order, local approximation to u at each of these

cell boundaries by utilizing a carefully weighted combination of multiple different

local approximations, each calculated using a different collection of nearby points.

What we do with that reconstruction and exactly which functions we reconstruct

differs from scheme to scheme, but the basic WENO procedure remains essentially

the same. Given a function u known on the sample points xi, we seek a polynomial

approximation to u at the cell boundary points xi± 1
2
.

Figure 2.2: Schematic showing a computational cell

2.2 Polynomial Reconstruction

To begin, we consider the rth order accurate local polynomial reconstruction of

u near xi using a stencil (a collection of points) surrounding xi. For illustrative

purposes, we take r = 4; hence, we need to select 4 points to comprise the stencil.



15

Figure 2.3 shows one potential stencil, {xi−1, xi, xi+1, xi+2}, which defines a set of four

points we will use to build the approximation.

Figure 2.3: Schematic showing a local polynomial reconstruction

Following the Lagrange polynomial approach, we ultimately seek a polynomial

that gives u(xj) when evaluated at xj and zero everywhere else in the local stencil.

Consider the function

φj(x) =

∏p=i+2
p=i−1(x− xp)∏p=i+2
p=i−1(xj − xp)

, where j 6= p. (2.2)

Utilizing this polynomial, we define a function that is equal to u(xj) for all j as

Pr(x) =

j=r−1∑
j=0

φj(x)u(xj). (2.3)

Referencing Figure 2.3, it is clear that there are other sets of four adjacent points that

could be used to build the polynomial Pr(x). There is no reason why we could not have

selected {xi, xi+1, xi+2, xi+3},{xi−2, xi−1, xi, xi+1}, or {xi−3, xi−2, xi−1, xi} as either set

would have provided a 4th order approximation to u(xi+ 1
2
) without extrapolation.

Specifically, for an r order reconstruction polynomial Pr(x), there are r suitable stencil

choices of r points each. Hereafter, we will denote the stencil selection using the

index ks, where ks = 0 represents the stencil consisting of the right-most points

and ks = r − 1 contains the left-most points; thus as ks increases, the stencil is

incrementally shifted leftward. As an example, for a second order approximation,

we would have r = 2 with two possible stencil choices, ks = 0 yielding the stencil
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xj ∈ {xi, xi+1} and ks = 1 corresponding to stencil xj ∈ {xi−1, xi}.

These two “sub-stencils” constitute an overall left-biased reconstruction because

each sub-stencil contains the point xi which falls to the left of the cell boundary xi+ 1
2
.

However, the cell boundary value u(xi+ 1
2
) could be approximated to the same accuracy

by instead including the rightward point xi+1 in each sub-stencil. The notion of a

right or left biased scheme is applicable when solving non-linear conservation laws;

the extension from the left-biased is straightforward, so we will only discuss the latter

here. Using this convention, we obtain an expression for the left-biased polynomial

reconstruction by evaluating (2.3) at x = xi+ 1
2

and solving the resulting system to

obtain

u(xi + 1
2
h) ≈ Pr,ks,i+ 1

2
=

q=r−1∑
q=0

ar,ks,qui−ks+q, (2.4)

where ar,ks,q is constant and given by

ar,ks,q =

∏p=r
p=0(1

2
− ks + p)

(−1)q (q!) (r − q)!
, where q ∈ [0, r] and p 6= q. (2.5)

Table 2.1 below gives the coefficients for up to 6th order.

Table 2.1: Interpolation coefficients (ar,ks,q) up to 6th order

r 2 3 4 5 6

ks 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5

q=0 1
2
−1
2

3
8

−1
8

3
8

5
16

−1
16

1
16

−5
16

35
128

−5
128

3
128

−5
128

35
128

63
256

−7
256

3
256

−3
256

7
256

−63
256

q=1 1
2

3
2

3
4

3
4

−5
4

15
16

9
16

−5
16

21
16

35
32

15
32

−5
32

7
32

−45
32

315
256

105
256

−25
256

21
256

−45
256

385
256

q=2 −1
8

3
8

15
8

−5
16

9
16

15
16

−35
16

−35
64

45
64

45
64

−35
64

189
64

−105
128

105
128

75
128

−35
128

63
128

−495
128

q=3 1
16

−1
16

5
16

35
16

7
32

−5
32

15
32

35
32

−105
32

63
128

−35
128

75
128

105
128

−105
128

693
128

q=4 −5
128

3
128

−5
128

35
128

315
128

−45
256

21
256

−25
256

105
256

315
256

−1155
256

q=5 7
256

−3
256

3
256

−7
256

63
256

693
256
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2.3 WENO Weights

As previously noted, for any approximation order r, we can form r unique polyno-

mial reconstructions by utilizing different stencils (ks values). The central idea behind

WENO involves forming a weighted sum of each unique approximation (Pr,ks,i+ 1
2
) to

create an overall approximation PWENO∗
r,i+ 1

2

. This polynomial takes the form

PWENO∗
r,i+ 1

2
=

ks=r−1∑
ks=0

br,ksPr,ks,i+ 1
2
. (2.6)

If the approximations at each sub-stencil are weighted appropriately such that

lower order terms in the Taylor series expansion or Pr,ks,i+ 1
2

cancel, we could use all

the available points resulting in an interpolation of higher order. For instance, letting

r = 3 and ks = [0, 1, 2], from (2.4), we see that in calculating each of the three

polynomials, we utilized the five unique points {ui−2, ui−1, ui, ui+1, ui+2}. Hence, if

we combine these five points such that the overall coefficients equal those of the

polynomial approximation for r = 5, ks = 2, we could obtain the same approximation

as if we had utilized r = 5 with ks = 2 to begin with. This allows for the definition of

a set of optimal weights br,ks that give a 2r−1 order approximation from the r unique

rth order approximations. The equation defining these optimal weights is found by

substituting (2.4) into (2.6) and equating the coefficients of each point to obtain

r−1∑
ks=0

br,ksur,ks,i+ 1
2

=

q=2(r−1)∑
q=0

(a2r−1,r−1,q)ui−(r−1)+q. (2.7)

Using (2.7), we can construct a linear system to solve for each br,ks . Table 2.2

provides these optimal coefficients up though r = 6 (which would yield an 11th order

overall approximation).
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Table 2.2: Optimal reconstruction coefficients (br, ks) up through 11th order

ks 0 1 2 3 4 5

r

2 3
4

1
4

3 5
16

5
8

1
16

4 7
64

35
64

21
64

1
64

5 9
256

21
64

63
128

9
64

1
256

6 11
1024

165
1024

231
512

165
512

55
1024

1
1024

Equation (2.6) along with Table 2.2 give the best case or optimal combination of

the approximations from each sub-stencil for a given r. However, this is only true in

smooth regions; consider the case shown in the Figure 2.4, which shows a function

that is discontinuous at some point between xi and xi+1. We seek to approximate the

point xi+ 1
2

to high order, but the direct usage of (2.6) with the optimal weights would

be impacted by Gibbs phenomena. Stencils “A” and “B” both contain a discontinuity,

and if either are used, the reconstruction will be oscillatory.

Figure 2.4: Schematic showing stencil choices for a discontinuous function

The WENO scheme seeks to handle this exception by utilizing a smoothness mea-

suring feedback mechanism that locally modifies the optimal weights of Table 2.2 such

that sub-stencils containing discontinuities are not used in the overall approximation.
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The WENO smoothness indicators were defined by Jiang and Shu [26] as

βr,ks,i =
r−1∑
l=0

h2m−1

∫ 1
2
h

− 1
2
h

[
dm

dξ
Pr,ks,i+ 1

2
(ξ)

]2

d(ξ − xi), (2.8)

which is just the sum of the L2 norms of all derivatives of the interpolating polynomial

defined in (2.4). These smoothness indicators are combined with the optimal weights

as follows:

αr,ks =
br,ks

(βr,ks,i + 10−40)2
(2.9)

ωr,ks =
αr,ks∑R
j=0 αr,j

. (2.10)

Finally, the overall WENO reconstruction polynomial of order 2r − 1 takes on the

form

PWENO
r,i+ 1

2
=

ks=R∑
ks=0

ωr,ks,i+ 1
2
Pr,ks,i+ 1

2
. (2.11)

The WENO weights, αr,ks , are inversely proportional to the smoothness indica-

tors, β, so for a sub-stencil containing a discontinuity, these weights will tend towards

zero, effectively eliminating the contribution of the sub-stencil from the overall re-

construction. However, for a smooth stencil where β = 1, they will tend towards the

optimal weights, br,ks . Hence, in smooth regions, the WENO reconstruction of (2.11)

approaches the optimal 2r − 1 order reconstruction of (2.6). The results of (2.8) are

tabulated for r ∈ {2, 3, 4, 5, 6} in the literature [26, 4] and for higher orders in [18].

In summary, the WENO process involves taking some arbitrary function, w,

known on the grid {x0, x1, . . . , xN−1} and approximating w at the cell boundaries

{x 1
2
, x 3

2
, . . . , xN− 1

2
} using a non-linear interpolating polynomial. Hereafter, we de-

note this overall procedure for a left biased reconstruction as L(wxi) = ŵleft
x
i+1

2

≈ wx
i+1

2

.

Similarly, R(wxi) = ŵright
x
i+1

2

≈ wx
i+1

2

represents a right biased WENO reconstruction.
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2.4 Mapped WENO Weights

It is well known that the WENO weights of Jiang and Shu [26] may fail to obtain

the expected convergence rate for a smooth function in the presence of critical points

where the first derivative is zero. This reduction in accuracy arises because at critical

points, the smoothness indicators of (2.8) may not exist due to vanishing derivatives.

This behavior has been studied extensively in the literature [23, 17, 50, 5]. The widely

adopted fix for this issue, introduced by Henrick et al. [23], utilizes a simple mapping

function on the non-linear weights to correct (2.8) in the case of vanishing derivatives.

Incorporating this modification into our scheme is trivial. After calculating ωr,ks

using (2.10), we simply evaluate the mapping function gr,ks and obtain a new set of

mapped weights defined by

α∗ks = gr,k(ωr,ks) =
ωr,ks(br,ks + b2

r,ks
− 3(br,ks)ωr,ks + ω2

r,ks
)

b2
r,ks

+ ωr,ks(1− 2br,ks)
. (2.12)

These α∗ks weights are then substituted back into (2.10) in place of αks to obtain the

non-linear weights. It has been shown [23] that this simple modification will preserve

the 2r− 1 convergence rates for all r ≥ 3 in the presence of a critical point. Thus, to

avoid reduced accuracy at critical points, we utilize the mapping function (2.12) in

our scheme.

2.5 Spatial Derivative Calculation

So far, we have discussed the WENO polynomial reconstruction of a function

u(xi, t
n) in order to obtain an approximation at the cell boundary points u(xi+ 1

2
, tn).

In the context of the conservation law shown in (1.1), we now have a method for a

high-order approximation of the conserved variable u(x, t). The next step is to cal-

culate the spatial derivative term ∂
∂x

[f(u)] using the WENO reconstruction; however,

before proceeding, it is important to highlight some key differences among WENO
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implementations.

Traditionally, the WENO reconstruction is not performed on the conserved vari-

able u; instead it is performed upon the flux function f(u). That is, rather than

forming

L(u(x, t)) = PWENO
i+ 1

2
≈ ui+ 1

2
, (2.13)

most WENO implementations [26, 4] have instead been built upon

L(f(u(x, t))) = PWENO
i+ 1

2
≈ f

(
ui+ 1

2

)
. (2.14)

To calculate the spatial derivative, this approach typically considers an unknown

“numerical flux function” h defined [49] as

f(u(x)) =
1

∆x

∫ x+ 1
2

∆x

x− 1
2

∆x

h(u(ξ))dξ. (2.15)

By its definition, when averaged over a cell, h gives the known cell-center fluxes

f(u(xi)). By differentiating both sides of this equation and applying the Leibniz rule,

we obtain

∂

∂x
[f(u)]

∣∣∣∣
xi

=
h(ui+ 1

2
)− h(ui− 1

2
)

∆x
. (2.16)

This equation indicates that if the function h(ui± 1
2
) were known, then the derivative of

f(u(xi)) could be exactly calculated as above. Hence, to obtain a high-order derivative

approximation, the numerical flux function is approximated using the boundary values

of the flux fi+ 1
2

which are calculated using the WENO procedure

h(u(xi+ 1
2
)) ≈ L(f(u(xi, t))) = f̂(u(xi+ 1

2
)). (2.17)

The traditional approach to a WENO scheme involves directly reconstructing the

flux f(u(x, t)) and then substituting this result into (2.16) to approximate the spatial
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derivative term. For the Euler system, this method would involve finding the WENO

reconstructions of the vector of fluxes, [ρv, ρv2 + p, (ρe + ρv2

2
+ p)v]. However, for

the case of the multi-fluid model, this approach fails to achieve pressure equilibrium

across an interface leading to oscillatory solutions [45, 28]. The remedy is to perform

the WENO reconstruction directly upon the primitive variables and then evaluate the

fluxes using these approximations [45, 28]. That is, for the Euler system, the WENO

reconstructions of ρ, v, and p are first calculated, and then these approximations are

utilized to obtain the fluxes f(xi+ 1
2
).

Continuing within the framework of a one-dimensional conservation law (2.1), this

approach is expressed as

f(u(xi+ 1
2
)) ≈ f(L(u(xi, t))) = f(û(xi+ 1

2
)). (2.18)

Under this scheme, the calculated cell boundary fluxes f(û) do not approximate the

numerical flux function h, and it can be shown that (2.16) is not valid and will yield

a second order approximation regardless of the order of the WENO reconstruction

of u(x, t) [46]. In order to obtain high-order derivative calculations, we must utilize

additional terms. In particular, we can form a 2p order finite difference approximation

as

h
∂f

∂x

∣∣∣∣
xi

≈
j=p∑
j=1

dj(f(ûi+j− 1
2
)− f(ûi−j+ 1

2
)). (2.19)

The dj weights are calculated by expanding (2.19) and expressing each f term as a

Taylor series. Combining the resulting expressions such that lower order Taylor series

terms are cancelled yields the values for the dj weights [45]. Values for up to 11th

order are given in Table 2.3.
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Table 2.3: Derivative Coefficients (dj) up to 12th order

d0 d1 d2 d3 d4 d5

n,order

2 1 - - - - -

4 9
8

− 1
24

- - - -

6 75
64

− 25
384

3
640

- - -

8 1225
1024

− 245
3072

49
5120

− 5
7168

- -

10 2047
1690

− 735
8192

567
40960

− 86
48707

35
294912

-

12 160083
131072

− 12705
131072

14704
842749

− 1013
341389

207
576593

− 17
778110

2.6 Non-Linear Conservation Laws

The well known advection or transport equation is the simplest case of the con-

servation law (1.1); here the flux is f(u(x, t)) = au(x, t), where a is the constant

advection speed. For such a case, a left biased WENO scheme can be applied di-

rectly; however, for a non-linear conservation law, e.g. f(u(x, t)) = 1
2
[u(x, t)]2, a few

additional steps must be employed because the local advection speed is non-constant.

Specifically, in order to enforce upwinding and ensure stability, a globally left or

right biased finite difference scheme cannot be applied. Rather, we must utilize the

Lax-Friedrichs flux-splitting technique to rewrite the flux as

f =
f(u) + αu

2
+
f(u)− αu

2
, (2.20)

where α is the maximum characteristic speed of u, calculated at each time step as

α = max
i

(∣∣∣∣ ∂∂u [f(ui)]

∣∣∣∣) . (2.21)

In (2.20), the first term is the positive flux and the second term is the negative flux.

Upwinding is enforced by utilizing a left biased numerical scheme on the positive flux

and a right biased numerical scheme upon the negative flux. Within the context of our
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scheme, this is accomplished by obtaining the left and right WENO reconstructions

of u and then substituting these approximations into the respective left and right

terms of (2.20) to obtain

f
(
ui+ 1

2

)
=

1

2

{
f
(
ûleft
i+ 1

2

)
+ αûleft

i+ 1
2

+ f
(
ûright

i+ 1
2

)
− αûright

i+ 1
2

}
. (2.22)

The right WENO approximation can be readily obtained by just reversing the

order of the stored ui vector and shifting the index to the right before applying the

left scheme. The above expression can then be substituted directly into (2.19), and

the remaining derivative calculation proceeds just as done for the linear case. In

short, the non-linear case requires that we form two separate WENO approximations

of u and then assemble them using the LF flux-splitting technique to rewrite f in a

form consistent with upwinding.

2.7 System of 1D Non-linear Conservation Laws

Here we consider the extension of the WENO scheme to systems of conservation

laws of the form

∂u

∂t
+
∂f

∂x
= 0, (2.23)

where u is a vector of coupled conservative variables and f is a vector of fluxes.

Within the context of the general two-fluid system, the conserved variables are u =

[ρ, ρv, ρ(e + v2

2
),Γ1,Γ2]T . These variables represent the specific forms of mass, mo-

mentum, total energy, and the two interface capturing functions, respectively. Taking

the internal energy as e = p+Π
ρ(γ−1)

, these variables can be further broken down into

density, velocity, and pressure along with the interface capturing functions to define

the vector of primitive variables up = [ρ, v, p,Γ1,Γ2]T .

In practice, rather than solving (1.10)–(1.14) as given, we instead solve an equiva-

lent system where the two interface capturing advection equations are written in the
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following conservative plus source term form:

∂Γ1

∂t
+

∂

∂x
[vΓ1]− Γ1

∂v

∂x
= 0 (2.24)

∂Γ2

∂t
+

∂

∂x
[vΓ2]− Γ1

∂v

∂x
= 0. (2.25)

In (1.5) and (1.8), the velocity terms are outside the spatial derivative, and at each

time step, its value is taken as the primitive variable v calculated during the previous

time step. However, with the above forms, the velocity terms lie within the derivative

allowing us to use the same discretized reconstruction of velocity across all equations

to obtain a more consistent scheme [28, 45]. In this form, the vector of fluxes is

defined as f = [ρv, ρv2 + p, (ρ(e+ ρv2

2
) + p)v, vΓ1, vΓ2]T .

The addition of the source terms in (2.24) and (2.25) have minimal impact upon

the overall algorithm. The first two terms of each of these equations form conservation

laws onto which the WENO reconstruction scheme can be applied directly; the only

change is that after calculating the spatial derivative of (2.19), the derivative of the

source term must be added in as well. The source terms are discretized as

hΓ
∂v

∂x

∣∣∣∣
xi

≈ Γ

j=1∑
j=0

 v̂left
i+j+ 1

2

+ v̂right

i+j+ 1
2

2

−
 v̂left

i−j− 1
2

+ v̂right

i−j− 1
2

2

 , (2.26)

where v̂ denote the left or right WENO reconstructions of the velocity. This discretiza-

tion results in high-order accuracy away from interfaces and second order accuracy

near interfaces [45].

Beyond the addition of several conserved variables, the extension to the system of

conservation law cases requires a more complicated approach to upwinding. Specif-

ically, the α term (also called the stabilization parameter) of (2.21) is defined for a

scalar function f(u(xi)) not for a vector function f(u(xi)); hence, the definition of
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the stabilization parameter must be generalized to

α =
N

max
i=0

( j=m
max
j=1
|λi,j|

)
, (2.27)

where λi,j are the eigenvalues associated with the Jacobian matrix of f(u(xi)). To

define the eigenvalues associated with the system, we consider the quasi-linear or

primitive form:

∂

∂t
[ui] + A

∂

∂x
[upi], (2.28)

where for the 1D two-fluid system, A is defined as

A =



vi ρi 0 0 0

0 vi
1
ρi

0 0

0 ρic
2
i vi 0 0

0 0 0 1 0

0 0 0 0 1


. (2.29)

The eigenvalues of this matrix are vi, vi − ci, and vi + ci. Since the speed of sound is

always positive, the maximum eigenvalue is α = maxNi=0 (|vi|+ ci).

Similar to the scalar non-linear case, α is calculated at each time step (and at

each stage when using a Runge-Kutta temporal scheme), and the Lax-Friedrichs flux

splitting of (2.22) is utilized for each conservative variable to form all three flux val-

ues. However, for the coupled system of (2.28), upwinding cannot be applied directly

because the advection speeds are unknown in the coupled form. Thus, before calcu-

lating the left and right reconstructions, the primitive variables must first be mapped

into the characteristic space to approximately decouple the directionality of the sys-

tem [45]. Considering the form of (2.28), to obtain the characteristic decomposition,
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we need to diagonalize A as A = QΛQ−1. This permits the rewriting of (2.28) as

∂

∂t
[Q−1ui] = Λ

∂

∂x
[Q−1upi ]. (2.30)

Since Λ is a diagonal matrix, this form of the Euler system is a set of advec-

tion equations where the advection velocities are the eigenvalues of A. To enforce

upwinding, the WENO reconstruction is performed upon Q−1up instead of up and

then mapped back into physical space by multiplying the reconstructed characteris-

tic variables by Q before calculating the spatial derivatives. The two transformation

matrices are given below:

Q =



1 1 1 0 0

− c
ρ

0 c
ρ

0 0

c2 0 c2 0 0

0 0 0 1 0

0 0 0 0 1


Q−1 =



0 − ρ
2c

1
2c2

0 0

1 0 − 1
c2

0 0

0 ρ
2c

1
2c2

0 0

0 0 0 1 0

0 0 0 0 1


. (2.31)

Since the primitive variables up = [ρ, v, p,Γ1,Γ2]T are defined at each xi, the trans-

formation matrices Q and Q−1 must also be calculated at each xi as well. However,

the output of the WENO reconstruction are the cell boundary primitive variables

up(xi+ 1
2
), while the transformation matrices were defined using cell-centered values.

To this end, we define the transformation matrices using the arithmetic average of

the primitive variables adjacent to the cell boundary. That is, for Q and Q−1, we

calculate each element using ρ = ρi+ρi+1

2
, v = vi+vi+1

2
, and p = pi+pi+1

2
.

After mapping the primitive variables into the characteristic space, the WENO

reconstruction is performed directly upon these mapped variables. However, before

forming the conservative variables and the LF flux (2.22), the primitive variables

have to be mapped back into physical space. So, with L denoting the left WENO
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reconstruction operator and R giving the right WENO operator, we have:

ûleft
j,i+ 1

2
= QL

(
Q−1upj,i

)
(2.32)

ûright

j,i+ 1
2

= QR
(
Q−1upj,i

)
(2.33)

In summary, the overall procedure at each time step is as follows:

1. Map the cell centered primitive variables into the characteristic space as Q−1up.

2. Form the left and right WENO reconstructions of each transformed primitive

variable using (2.11).

3. Transform the left and right WENO reconstructed characteristic variables back

into physical space by multiplying by Q.

4. Calculate the cell-boundary conservative variables from the reconstructed cell-

boundary primitive variables.

5. Form the Lax-Friedrichs flux split with (2.22) for each conservative variable.

6. Approximate the spatial derivative of each flux using (2.19).

7. Use (2.26) to calculate the source terms. The inputs to this equation are the left

and right WENO reconstructions of velocity from Step 3 and the cell-centered

order parameters (Γ1i ,Γ2i) known at the beginning of the time step.

8. Subtract these source terms from the respective flux derivatives calculated in

Step 6.

9. Integrate in time to obtain the updated cell centered conservative variables.

From these calculate the updated primitive variables.
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2.8 Two Dimensional System

Here, the application to the two dimensional case of the two-fluid model is briefly

discussed. The general form of the system is

∂u

∂t
+

∂

∂x
[f(u)] +

∂

∂y
[g(u)] + a

∂vx
∂x

+ a
∂vy
∂y

= 0 (2.34)

where u = [ρ, ρvx, ρvy, E,Γ1,Γ2]T gives the conserved variables. The vector f =

[vxρ, ρv
2
x+p, ρvxvy, (E+p)vx, vxΓ1, vxΓ2]T describes the fluxes in the x direction. The

vector of fluxes in the y direction is g = [vxρ, ρvxvy, ρv
2
y + p, (E + p)vy, vyΓ1, vyΓ2]T .

Finally, the vector a = [0, 0, 0, 0,Γ1,Γ2] accounts for the source term discretization of

the order parameters (2.24). The algorithm follows the same steps as outlined above

for the 1D case, except it must be performed twice for each point in the computational

domain — once in the x direction and once in the y direction.
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Chapter 3

Positivity

In this chapter, a positivity-preserving algorithm is developed for our high-order

finite difference scheme. It begins by highlighting the necessity of positivity preser-

vation and briefly reviewing applicable work within this space. The application of

the algorithm to our scheme is then detailed for the case of scalar conservation and

the 1D Euler system. Finally, the extension to the two-fluid model and two spatial

dimensions are considered.

3.1 Motivation

The previously described WENO scheme provides “essentially” non-oscillatory

solutions, meaning that some relatively small oscillations that vanish with grid re-

finement may be present near discontinuities and sharp features after the reconstruc-

tion. In many cases, these oscillations have negligible impact on the overall solution;

however, for certain scenarios, they can pose problems. For example, simulations

that involve very high Mach shock waves can quickly develop negative density and/or

pressure values. Figure 3.1 illustrates this for a shock tube containing air with a high

pressure ratio across the diaphragm. The initial data for this simulation were ρ = 1

and v = 0 with p = 1 to the right of the diaphragm (located at x = 0.5) and p = 1000

to the left of the diaphragm. The simulation was run to one time step (CFL=0.4)

with the 9th order scheme over a domain [0, 1] with N = 100 grid points.

Figure 3.1 shows that within one time step, the simulation obtained a negative

pressure value implying a complex sound speed which would cause the simulation to
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crash if subsequent time steps were attempted.
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Very High Pressure Sh ck Tube: One Time Step

Figure 3.1: Demonstration of a negative pressure value developing in a shock tube with a
pressure ratio of 1000 across the diaphragm

In the context of the Euler equations or the two-fluid model, we need to enforce

some lower limit on the primitive variables of density and pressure that guarantees a

real sound speed. For the scalar conservation law, the analogous, albeit more restric-

tive, behavior is typically referred to as “maximum-principle preserving,” meaning

that all solutions stay within the upper and lower bounds of the initial data.

Several techniques have been developed to counter this behavior and achieve rig-

orous positivity-preserving schemes. In particular, Zhang and Shu introduced a lim-

iter [62] for scalar conservation laws that is high-order accurate and valid in multi-

dimensions. They later extended their method to finite volume and finite difference

schemes for the Euler equations [63, 61]. This method utilizes a limiting process upon

the polynomial reconstructions of fluxes rendering it unamendable to our scheme,

which is based upon the reconstruction of primitive variables. Furthermore, this

technique imposes an undesirable CFL restriction of 1
12

. An alternate flux limiting

approach for 1D scalar conservation laws was introduced by Xu [57] and subsequently

extended to 2D [32].
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This method was designed to be high-order and independent of flux reconstruction

strategy. Later, Hu et al. [25] introduced a positivity-preserving scheme for the Euler

equations based upon the flux limiter approach; however, this scheme suffered from

reduced accuracy unless very small CFL numbers were used. Finally, the technique

was successfully extended to the 1D and 2D Euler system by Xiong et al. [56] who

demonstrated positivity preservation for high-order schemes with very minimal CFL

restrictions. Because of these desirable qualities, coupled with the fact that their

technique is independent of flux reconstruction, we will adopt their approach for

devising a high-order positivity scheme to our two-fluid compressible model.

3.2 Flux Limiting Background

In the most basic sense, the positivity scheme of [57, 32, 56] works by exploiting

the maximum principle preserving (MPP) property of the first order Lax-Friedrichs

method. It is well known that this first order scheme will always be bounded by the

maximum and minimum values of the initial data, so the goal is to locally modify the

calculated, high-order flux reconstructions towards this first order solution whenever

the high-order reconstructions yield unphysical solutions.

The starting point of the scheme is to express the conservation law (1.1) in the

general conservative form

∂

∂t
[ui] = −1

h
F (ui), (3.1)

where

F (ui) = Hi+ 1
2
−Hi− 1

2
. (3.2)

Here F (ui) is some arbitrary numerical scheme that calculates the high-order cell

boundary fluxes Hi+ 1
2

and Hi− 1
2
. Using some time integration method, the updated
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solution at each time step is expressed as

un+1
i = uni −

τ

h

(
H∗
i+ 1

2
−H∗

i− 1
2

)
, (3.3)

where H∗
i± 1

2

represent an overall high-order flux obtained at the end of a multi-stage

time integration. It is important to note that, as pointed out in [57, 56], positivity is

not enforced during the intermediary time integration stages; it is only enforced after

the final time integration stage has been completed but before the updated solution is

calculated. For the classic 4th order Runge-Kutta time integration scheme, we obtain

the following expression at the end of all four RK stages

un+1
i = uni + τ

(
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4

)
, (3.4)

where bq and αqj are tabulated constants and kq is

kq = F

(
uni + τ

q−1∑
j=1

αqjkj

)
. (3.5)

Since each k term is just an evaluation of F , we recast (3.4) as

un+1
i = uni +

τ

h

(
1

6
F (w1) +

1

3
F (w2) +

1

3
F (w3) +

1

6
F (w4)

)
, (3.6)

where wj represents ui at the jth RK stage. Utilizing the definition of F (3.2), we

can expand this equation as

un+1
i = uni −

τ

h

[
1

6
H1
i+ 1

2
+

1

3
H2
i+ 1

2
+

1

3
H3
i+ 1

2
+

1

6
H4
i+ 1

2

−
(

1

6
H1
i− 1

2
+

1

3
H2
i− 1

2
+

1

3
H3
i− 1

2
+

1

6
H4
i− 1

2

)]
,

(3.7)

where the superscripts denote the reconstructed fluxes from a specific RK stage. After

collecting all positive and negative terms in (3.7), the updated solution after the final
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RK stage can be expressed in the required form of (3.3) as

un+1
i = uni −

τ

h

(
HRK
i+ 1

2
−HRK

i− 1
2

)
. (3.8)

The results of (3.8) indicate that the left and right fluxes from each RK stage must

be separately summed to form the overall HRK
± fluxes; however, care must be taken

in how these terms are defined within our primitive variable based reconstruction. In

the present work, the right hand side of (3.1) is calculated to 2r order accuracy using

(2.19) to obtain

h
∂f

∂x

∣∣∣∣
xi

≈ (Hi+ 1
2
−Hi− 1

2
) =

j=r∑
j=1

dj(f̂i+j− 1
2
− f̂i−j+ 1

2
), (3.9)

where, for brevity, we denote the 2r − 1 order cell boundary LF fluxes, f(ûi± 1
2
), as

f̂i± 1
2
. Expanding the summation term gives

h
∂f

∂x

∣∣∣∣
xi

≈
(
d1f̂i+ 1

2
+ d2f̂i+ 3

2
+ d3f̂i+ 5

2
+ · · ·+ drf̂i+ 2r−1

2

)
−
(
d1f̂i− 1

2
+ d2f̂i− 3

2
+ d3f̂i− 5

2
+ · · ·+ drf̂i− 2r−1

2

)
. (3.10)

Comparing (3.10) with (3.2), it may seem reasonable to utilize the two terms in

parentheses as the fluxes taking Hi+ 1
2

= d1f̂i+ 1
2

+ d2f̂i+ 3
2

+ · · · + drf̂i+ r
2

and Hi− 1
2

=

d1f̂i− 1
2

+ d2f̂i− 3
2
· · · + drf̂i− r−1

2
as the right and left fluxes at cell Ii. However, this is

incorrect as it would violate conservation. To demonstrate this point, we substitute

i = i − 1 into Hi+ 1
2

= d1f̂i+ 1
2

+ d2f̂i+ 3
2

+ . . . to obtain the right flux at cell Ii−1.

Doing so yields Hi− 1
2

= d1f̂i− 1
2

+ d2f̂i+ 1
2

+ . . . , which clearly contradicts the proposed

expression for Hi− 1
2

based upon the negative term in (3.10).

In order to have a conservative scheme, the left flux of cell Ii must be equal to the

right flux of cell Ii−1, or in general, the flux at any cell boundary must be the same
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regardless whether it is approached from the left or right. Hence, we must define the

Hi± 1
2

flux terms such that H+
i+ 1

2

= H−
i+ 1

2

. Similar to Del Zanna et al. [60], we can

construct a conservative flux as

Hi+ 1
2

= c0Li+ 1
2

+ c1(Li+ 3
2

+ Li− 1
2
) + c2(Li+ 5

2
+ Li− 3

2
) + . . . (3.11)

such that

h
∂f

∂x

∣∣∣∣
xi

≈ (Hi+ 1
2
−Hi− 1

2
) =

q=r∑
q=1

dq(f̂i+q− 1
2
− f̂i−q+ 1

2
) (3.12)

is satisfied. To obtain the c constants, the difference (Hi+ 1
2
− Hi− 1

2
) can be formed

using (3.11) and substituted into (3.12) to obtain a linear system. The results are

tabulated for r ∈ {2, 3, 4, 5, 6} in Table 3.1.

Table 3.1: Coefficients for conservative flux construction

c0 c1 c2 c3 c4 c5

r

2 13
12

− 1
24

- - - -

3 1067
960

− 29
480

3
640

- - -

4 30251
26880

− 7621
107520

159
17920

− 5
7168

- -

5 1013909
894323

− 55509
716006

11303
926795

− 425
258048

35
294912

-

6 799692
701963

− 61116
744283

7639
515538

− 684
260063

251
744459

− 17
778110

With the left and right high-order fluxes defined in (3.11), these results can be

substituted into (3.3) for each RK stage to obtain the overall flux approximations

HRK
i+ 1

2

and HRK
i− 1

2

for the final time stage as required by (3.8). It is worth noting that

the above procedure is not limited to a scalar case; indeed, HRK
± 1

2

can represent a

vector of fluxes HRK
± 1

2

, where each f̂i± 1
2

is a Lax-Friedrich flux (2.22) as in the Euler

system or the two-fluid model.
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3.3 Implementation for scalar case

In general, we seek to enforce the following maximum principle preserving con-

straint upon our updated solution

um ≤ un+1
i ≤ uM . (3.13)

After substituting (3.8) for un+1
i , we can write this inequality as

um ≤ uni −
τ

h
(HRK

i,+ −HRK
i,− ) ≤ uM (3.14)

where, for conciseness, we have dropped ±1
2

from the subscripts of the flux terms.

This inequality cannot be guaranteed based upon the existing high-order flux values,

so in order to ensure the positivity property, we introduce modified fluxes to replace

the HRK
i,± terms in the preceding equation. These modified fluxes are defined as


H̃RK
i,+ = hi,+ + θi,+(HRK

i,+ − hi,+)

H̃RK
i,− = hi,− + θi,−(HRK

i,− − hi,−)

(3.15)

where the hi,± terms represent the right and left, first-order, Lax-Friedrichs fluxes at

cell Ii. Since the first order scheme always satisfies (3.14), if θi,± = 0 in (3.15), then

the validity of (3.14) can be guaranteed at the expense of reducing the modified fluxes

to first order. Hence, the goal of this scheme is to identify the largest value between

0 and 1 that the flux limiter, θi,±, can take on such that the inequality of (3.14) is

true; if θi,± = 1, then the original high-order flux is retained, but if θi,± go to zero,

then the scheme locally approaches first order accuracy. To implement this scheme,

we need to methodically calculate the maximum values of θi,± at each cell, Ii. These

maximum values are denoted
{

ΛM
− 1

2
,i
,ΛM

+ 1
2
,i
,Λm
− 1

2
,i
,Λm

+ 1
2
,i

}
with ΛM

± 1
2

corresponding to
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the restrictions associated with the maximum bound and Λm
± 1

2

being related to the

lower bound. The process involves four logical statements for each part (eight in

total) that fully define all four Λ at each cell.

To describe the process, we begin with the inequality of (3.14) that we wish to

preserve using our modified flux values

um ≤ uni −
τ

h

(
H̃RK
i,+ − H̃RK

i,−

)
≤ uM . (3.16)

Substituting the definitions for the modified fluxes (3.15), we obtain

um ≤ uni −
τ

h

[
hi,+ + θi,+

(
HRK
i,+ − hi,+

)
− hi,− + θi,−

(
HRK
i,− − hi,−

)]
≤ uM . (3.17)

In an effort to simplify the expression, we introduce the notations

F+ = HRK
i,+ − hi,+ (3.18)

F− = HRK
i,− − hi,− (3.19)

to obtain

um ≤ uni − λ (hi,+ − hi,−)− (λθi,+F+) + (λθi,−F−) ≤ uM , (3.20)

where λ = τ
h
. Next, we break the inequality of (3.20) into the upper and lower parts

and enforce these limits separately. We begin by considering the upper limit.

3.3.1 Enforcing the upper limit

Rearranging (3.20) and only considering the upper limit gives

−uM + [uni − λ(hi,+ − hi,−)]− (λθi,+F+) + (λθi,−F−) ≤ 0 (3.21)
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Focusing on the term in the brackets, we see that this is just the first order approxi-

mation to ui at the next time step, which we know is maximum principle preserving

and must be less than uM . Thus, the inequality

un+1
i = uni − λ(hi,+ − hi,−) ≤ uM (3.22)

is always true. Rearranging the above equation as

ΓMi = uM − uni + λ(hi,+ − hi,−) ≥ 0 (3.23)

and substituting this back into (3.21), the inequality that must be preserved is found

to be

(λθi,−F−)− λθi,+F+ − ΓMi ≤ 0. (3.24)

Since ΓMi ≥ 0, the validity of (3.24) is entirely dependent upon the signs of F+ and

F−. To identify the maximum θi,± values, all four combinations for the signs of F+

and F− are considered.

1. F+ ≥ 0 and F− ≤ 0

Since both the first and second terms in (3.24) are less than zero, the inequality

is inherently preserved, and the fluxes do not need to be limited. Thus, we take

ΛM
+,i = 1

ΛM
−,i = 1.

2. F+ < 0 and F− ≤ 0

The first term in (3.24) is less than zero, but the second is not. Hence, to

preserve positivity, we need to solve for the maximum θi,+ that guarantees the

inequality. In general, we seek a set (θi,−, θi,+) ∈ [0,Λ−,i]× [0,Λ+,i] that defines
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a rectangular region on the (θi,−, θi,+) plane. The vertices of this region are

[(0, 0), (Λ−,i, 0), (0,Λ+,i), (Λ−,i,Λ+,i)]. Figure 3.2 provides a visualization; the

green rectangle defines the set of acceptable θ values.

Figure 3.2: Illustration of flux limiters for positive flux case

For the case we are currently considering, (3.24) forces no conditions on the

maximum value of θi,−; therefore Λ−,i = 1. Owing to this fact, the lower right

vertex is fixed as Λi,− = 1. From (3.24), it is clear that Λi,+ depends linearly

on the value we select for θi,−; this is illustrated in Figure 3.2 as the diagonal

line. Although we don’t yet know what value θi,− will eventually take on, we do

know that it must be between 0 and 1. In order to define a Λ+,i that guarantees

positivity for any θi,−, we need to take the minimum value of this linear function

over the interval θi,− ∈ [0, 1] which occurs at θi,− = 0. Hence, we define the

limiter using (3.24) as

Λ+,i =
−ΓMi
λF+

. (3.25)

To avoid the case of division by zero, we introduce a small factor δ = 10−16 into

the denominator. Because the denominator must be negative, this term must

be negative as well. Thus, for this case, we take
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ΛM
−,i = 1

ΛM
+,i =


1 if

−ΓMi
λF+−δ > 1

−ΓMi
λF+−δ otherwise.

3. F+ ≥ 0 and F− > 0

Here, the second term in (3.24) is less than zero, while the first term is greater

than zero. Thus, in order to preserve the inequality, we need to limit the F− flux

term by solving for θi,−. We take the exact same approach as in the previous

case. Solving for θi,− in (3.24) gives

(λθi,−F−) + (−λθi,+F+)− ΓMi ≤ 0

θi,− ≤
ΓMi + (λθi,+F+)

λF−
.

Figure 3.3 illustrates the limiting procedure for this case. On the (θi,−, θi,+)

plane, the acceptable region of limiter values is the rectangle bounded by

[(0, 0), (Λ−,i, 0), (0, 1), (Λ−,i, 1)].

Figure 3.3: Illustration of flux limiters for negative flux case.

Analogous to the previous case, we need to identify the minimum value of θi,−
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that guarantees (3.24) for any θi,+. Hence, we assign the limiters at this cell as

ΛM
−,i =


1 if

ΓMi
λF−+δ

> 1

ΓMi
λF−+δ

otherwise

ΛM
+,i = 1.

4. F− > 0 and F+ < 0

For this case, both the first and second terms of the (3.24) are positive. To

establish this inequality, we need to limit both flux terms. This is accomplished

by taking θi,− = θi,+ = θi and then solving for the maximum θ value using

(3.24) to obtain

θi ≤
ΓMi

(λF−) + (−λF+)
.

If the above expression gives a value greater than 1, then there is no need to

limit the fluxes and we can take θi = 1. Thus, the limiters are defined by

ΛM
−,i =


1 if

ΓMi
−λF++λF−

≤ 1

ΓMi
−λF++λF−+δ

otherwise

ΛM
+,i =


1 if

ΓMi
−λF++λF−

≤ 1

ΓMi
−λF++λF−+δ

otherwise.

The four cases described above outline how the limiters for the maximum part can

be calculated at each cell. The integration of this process into the finite difference

scheme is straightforward and involves nothing more than looping through each point

in the domain and applying the above logic accordingly.
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3.3.2 Enforcing the lower limit

Next, the lower limit of the inequality (3.20) is considered. Specifically, we seek

to enforce

−um + [uni − λ(hi,+ − hi,−)]− (λθi,+F+) + (λθi,−F−) ≥ 0. (3.26)

Once again, the term in brackets is just the first order solution for un+1
i which is

guaranteed to be greater than um. Hence, we know that the sum of the first two

terms must be greater than zero, that is

Γmi = um − uni + λ[hi,+ − hi,−] ≤ 0. (3.27)

Substituting this definition back into (3.26) gives

(−λθi,+F+) + (λθi,−F−)− Γmi ≥ 0. (3.28)

Just as for the maximum part, noting that the third term −Γmi is always greater than

zero, we can consider the four possible cases for the other two terms and identify the

required flux limiter values.

1. F+ ≤ 0 and F− ≥ 0

Here both the first and second terms in (3.28) are greater than zero, so no

limiting is required. Thus, we can assign the limiters as

Λm
+,i = 1

Λm
−,i = 1.
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2. F+ > 0 and F− ≥ 0

The first term in (3.28) is less than zero while the second is not. Hence, we

must solve for the θi,+ value that guarantees the inequality for any θi,−. Thus,

for this case, we can assign the limiters as

Λm
−,i = 1

Λm
+,i =


1 if

Γmi
−λF+−δ > 1

Γmi
−λF+−δ otherwise.

3. F− < 0 and F+ ≤ 0

The first term in (3.28) is greater than zero while the second is less than zero.

Solving the corresponding limiters gives

Λm
−,i =


1 if

Γmi
λF−−δ > 0

Γmi
λF−−δ otherwise

Λm
+,i = 1.

4. F− < 0 and F+ > 0

Finally, we have the case where both the first and second term in (3.28) are less

than zero. Just as with the maximum part, we can take θi,+ = θi,− = θi and

then solve directly for θi to obtain the following limiters

Λm
−,i =


1 if

Γmi
−λF++λF−

≥ 1

Γmi
−λF++λF−−δ otherwise

Λm
+,i =


1 if

Γmi
−λF++λF−

≥ 1

Γmi
−λF++λF−−δ otherwise.
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3.3.3 Selecting the Flux Limiters

After going though the process of calculating the Λi,± values at each cell for both

the upper and lower bound, we select the conservative local flux limiters of (3.15) as


θi,+ = min

{
ΛM
−,i+1,Λ

M
+,i,Λ

m
−,i+1,Λ

m
+,i

}
θi,− = min

{
ΛM
−,i,Λ

M
+,i−1,Λ

m
−,i,Λ

m
+,i−1

}
.

(3.29)

This selection is designed to preserve conservation by enforcing the modified fluxes

of (3.15) to be equivalent at the shared cell boundary of adjacent cells.

3.4 Positivity Implementation for Euler System

The extension of the positivity scheme to the Euler system of equations adds

some additional complexities to the process. For this case, we now seek to enforce

the physical limits of positive density and pressure


ρni ≥ 0

pni ≥ 0

∀ i, n. (3.30)

Within the framework of a general non-linear system, governing equation enforced

upon a discrete grid takes the form

∂u

∂t

∣∣∣∣
xi

+
∂f(u)

∂x

∣∣∣∣
xi

= 0, (3.31)

where ui = [ρi, ρivi, ρi(ei +
v2i
2

)]T . Just as in the scalar case, we need to express the

updated solution in time as the difference of two fluxes

un+1
i = uni − λ

(
HRK
i+ 1

2
−HRK

i− 1
2

)
. (3.32)
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Once again, the HRK
i± 1

2

flux vectors are the combination of all respective fluxes obtained

at each Runge-Kutta stage, so their actual composition will be as shown in (3.7). It

is not necessary to enforce positivity at each RK stage as we are only interested in the

overall solution at the final stage. This approach leads to some ambiguity for the Euler

system because at each RK stage, we must identify the maximum characteristic speed

to perform Lax-Friedrichs flux splitting. This requires calculating the local sound

speed
√

γp
ρ

, which will become complex if either density or pressure are negative.

Following Xiong et al. [56], we can avoid this issue by simply taking the absolute

value of pressure and density when calculating the sound speed.

Our task is to identify flux limiters θ±,i at each cell boundary that modify the

high-order fluxes towards the first order, monotone fluxes whenever needed. Note

that the fluxes of each conserved variable are all modified by the same factor θ±,i as

H̃RK
i± 1

2
= hi± 1

2
+ θ±,i

(
HRK
i± 1

2
− hi± 1

2

)
. (3.33)

Enforcing positivity upon density is straightforward; the process is the same as

for the scalar case, except only the lower limit is enforced. Additionally, instead of

using 0 for the lower bound, we define a small number ερ that acts as the lower limit.

In particular, ερ is found at each time step as mini{ρn+1
i , ε∗} where ρn+1

i is just the

first order density solution at the n + 1 time step and ε∗ is some small constant. In

[56], ε∗ = 10−13 was used in all cases; however, we found that for very high orders

(i.e. greater than 7), slightly larger values (e.g., 10−9) gave better performance for

some problems. This is believed to be the result of precision loss due to the very large

constants associated with the very high-order reconstruction process.

The output of the positivity algorithm applied to density is a pair of maximum

flux limiters {Λρ
−,i,Λ

ρ
+,i} for each cell in the domain. These limiters are identical to

the Λm
±,i values of (3.29) and guarantee the positivity of density for any (θi,−, θi,+) ∈
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[0,Λρ
−,i]× [0,Λρ

+,i].

Enforcing positivity upon pressure poses a different challenge because pressure is

non-linearly dependent upon both density and velocity. Specifically,

pn+1
i =

{
En+1 − 1

ρn+1

[(ρv)n+1]2

2

}
1

Γn+1
1

− Γn+1
2

Γn+1
1

. (3.34)

Whereas ρ is both a primitive variable and a conserved variable, pressure must be

derived from the conserved total energy using the equation of state. Thus, it is not

possible to express the updated pressure in time as the difference between positive

and negative fluxes in the form of (3.14). A different approach is required.

The goal of the pressure positivity algorithm remains the same as for the density;

we need to identify the maximum limiters for (3.33) that guarantee p ≥ 0. However,

the methodology is quite different. For the scalar case, we just substituted the mod-

ified fluxes directly into um ≤ un+1
i ≤ uM and enforced each side of the inequality

separately. For pressure, we utilize an iterative procedure that employs (3.32) with

the modified fluxes of (3.33) to solve for En+1
i , and consequently, pressure at the

next time step pn+1
i . If pn+1

i ≥ 0, then pressure positivity is satisfied at xi, but if

pn+1
i < 0, then we need to identify which pair of limiters cause pn+1

i to be positive.

This is realized using a numerical root finding technique.

To facilitate the discussion, we define a function Y (ui) that accepts the conserved

variable vector and outputs the pressure. Additionally, we define an operator M

that accepts a pair flux limiters and calculates the updated conserved variables by

substituting the modified fluxes (3.33) into (3.32); that is, un+1
i = M(θ+,i, θ−,i) where

u is the vector of conserved variables at time step n+ 1 calculated from the modified

fluxes. Thus, the updated pressure can be written as

pn+1
i = Y (M(θ+,i, θ−,i)). (3.35)
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The condition that must be to satisfied for positivity is

pn+1
i = Y (M(θ+,i, θ−,i)) ≥ εp (3.36)

where εp is defined at each time step as εp = mini{p̄n+1
i , ε∗} where p̄n+1

i is the first order

solution for pressure at the n+ 1 time step. The algorithm for positivity preservation

is as follows:

1. Begin with the maximum limiters obtained from the density procedure [Λρ
−,i,Λ

ρ
+,i].

From these, define three new sets of limiters:

• A1
i = [0,Λρ

+,i],

• A2
i = [Λρ

−,i, 0],

• A3
i = [Λρ

−,i,Λ
ρ
+,i].

2. For each Aji , find the pressure at the next time step, pn+1
i = Y (M(Aji )). If

pn+1
i ≥ εp, then let Bj

i = Aji , otherwise, we need to find r such that Y (M(rAji ) ≥

εp. This is realized by employing a numerical root finder to identify the zero

of the function F (ri) = Y (M(riA
j
i )) − εp within r ∈ [0, 1]. The existence of a

single root is guaranteed because of the convexity of the pressure, and the usage

of [Λρ
−,i,Λ

ρ
+,i] ensures the positivity of density [56]. We then take Bj

i = riA
j
i .

Note that this evaluation and comparison are done on a cell by cell basis; that

is, ri is only defined locally for Aj at cell Ii.

3. After applying Step 2 for each Aj, the output is three fully defined Bj vectors

that represent the limited forms of Aj. The set of limiters that guarantee

positivity for both pressure and density are defined as

[
Λp
−,i,Λ

p
+,i

]
=
[
min

{
B2

0 , B
3
0

}
,min

{
B1

1 , B
3
1

}]
,



48

where the subscripts denote the zeroth or first element of each Bj.

4. Finally, the overall limiting parameters are defined in a conservative fashion as


θi,+ = min

{
Λp
−,i+1,Λ

p
+,i

}
θi,− = min

{
Λp
−,i,Λ

p
+,i−1

}
.

(3.37)

For Step 2, we found that Brent’s method [7] is well suited for this task as it

provides a fast, bounded method with guaranteed convergence. However, it should

be noted that care must be taken because of the tolerances associated with the root.

Because of the convexity of pressure, we know that over ri ∈ [0, 1], F (r) must have

exactly one root; furthermore, we know F (r) must be an increasing function of r. This

can be informally established by considering that r = 1 corresponds to the high-order

solution and r = 0 gives the first order solution. This observation coupled with the

monotonicity of F guarantees that if r0 is the calculated root of F , then for all r < r0,

F < 0 and positivity is preserved. Likewise, for all r > r0, F > 0 and positivity is

not preserved. If the root finding algorithm gives r0 within some tolerance ±δ, then

to guarantee that positivity of pressure, we need to take the root as r̄0 = r0 − 1
2
δ.

We found that not incorporating this restriction led to the failure of the positivity

scheme in some cases.

3.5 Positivity of the two-fluid model

The application of the above scheme to the two-fluid model is relatively straight-

forward. Because this model is based upon the stiffened gas equation of state, the
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conditions of positivity are slightly different


Γ1 > 0

ρni ≥ 0

pni + Πn
i ≥ 0

∀ i, n. (3.38)

These three conditions are sufficient to enforce hyperbolicity (real sound speed). The

third term arises from the expression for sound speed under the two-fluid model,

c =
√

γ(p+Π)
ρ

[47]. Hereafter, we refer to (pni + Πn
i ) as the “modified pressure”.

The implementations of positivity for Γ1 and ρ are identical to the procedure for

ρ in the Euler system case. We treat each case independently and obtain a set of

limiters for the order parameter [ΛΓ
−,i,Λ

Γ
+,i] and density [Λρ

−,i,Λ
ρ
+,i]. These limiters

are then combined as

[Λ−,i,Λ+,i] =
[
min

{
ΛΓ
−,i,Λ

ρ
−,i
}
,min

{
ΛΓ

+,i,Λ
ρ
+,i

}]
. (3.39)

It should be noted that when forming the overall high-order fluxes at the end of

the fourth RK stages
(
HRK
i+ 1

2

)
, the flux terms for the order parameters (Γ1 and Γ2)

include the discretization of the source terms (2.26) at each stage. The results of

(3.39) are passed into modified pressure positivity algorithm in the same way the

density limiters are used in the Euler case. Positivity of modified pressure proceeds

in the same manner as laid out for the Euler case; we simply need to substitute the

expression (pi + Π) in place of pi.

3.6 Extension to Two Dimensions

In two spatial dimensions, the addition of a second spatial derivative term requires

an extra set of fluxes to limit. Namely, at the end of the final RK stage at each cell
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I = (i, j), we have

un+1
I = unI − λx(HRK

i+ 1
2
,j
−HRK

i− 1
2
,j

)− λy(GRK
i,j+ 1

2
−GRK

i,j− 1
2
). (3.40)

The modified fluxes in each direction are defined as

H̃RK
i± 1

2
,j

= hi± 1
2
,j + θx±,I

(
HRK
i± 1

2
,j
− hi± 1

2
,j

)
(3.41)

G̃RK
i,j± 1

2
= gi,j± 1

2
+ θy±,I

(
GRK
i,j± 1

2
− gi,j± 1

2

)
. (3.42)

For ρ and Γ1, we seek to enforce un+1 ≥ ε (where we take u as either ρ or Γ1). Sub-

stituting the above definitions for modified fluxes into (3.40), we obtain the following

inequality:

−λxθEFE + λxθWFW − λyθNFN + λyθSFS − Γ ≥ ε, (3.43)

where Γ = −un+λx
(
hE−hW

)
+λy

(
gN −gS

)
≤ ε, and for brevity, FE = HRK

E −hE is

denoted as the “east” (i+ 1
2
, j) boundary of the cell I = (i, j), and FN = HRK

N − gN

is the “north” boundary(i, j + 1
2
), etc.

The decoupling procedure for ρ and Γ1 is the same as in 1D except we now have

sixteen different cases to consider instead of four. Our goal is to identify a vector

of four limiters [ΛE,ΛW ,ΛN ,ΛS] at each cell that gives the maximum permissible θ

values that guarantee un+1 ≥ ε. As a simplification, we adopt the following notation:

the tuple K = (k1, k2, k3, k4) maps to the truth of the following four conditions (FE >

0, FW ≥ 0, FN > 0, FS ≥ 0), where ki ∈ {0, 1}. Table 3.2 summarizes the decoupling

procedure for all 16 combinations.
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Table 3.2: Summary of flux limiters for ρ and Γ1 in 2D

K ΛE ΛW ΛN ΛS Result

(0,0,0,0) 1 1 Γ
λxFW+λyFS−ε

(0,0,0,1) 1 Γ
λxFW−ε

(0,0,1,0) 1 1 1 Γ
λxFW−λyFN+λyFS−ε

(0,0,1,1) 1 1 Γ
λxFW−λyFN−ε

(0,1,0,0) 1 Γ
λyFs−ε

(0,1,0,1)

(0,1,1,0) 1 1 Γ
−λyFN+λyFS−ε

(0,1,1,1) 1 Γ
−λyFN−ε

(1,0,0,0) 1 1 1 Γ
−λxFE+λxFW+λyFS−ε

(1,0,0,1) 1 1 Γ
−λxFE+λxFW−ε

(1,0,1,0) 1 1 1 1 Γ
−λxFE+λxFW−λyFN+λyFS−ε

(1,0,1,1) 1 1 Γ
−λxFE+λxFW−λyFN−ε

(1,1,0,0) 1 1 Γ
−λxFE+λyFS−ε

(1,1,0,1) 1 Γ
−λxFE−ε

(1,1,1,0) 1 1 1 Γ
−λxFE−λyFN+λyFS−ε

(1,1,1,1) 1 1 Γ
−λxFE−λyFN−ε

For each K case, the noted Λ values are set to the value in the “Result” column.

Just as in the 1D case, all Λρ and ΛΓ1 values are found for ρ and Γ1, and then the

minimum between them is taken at each cell boundary. Thus, at each cell, taking

{
(θE, θW , θN , θS)

∣∣0 ≤ θE ≤ ΛE, 0 ≤ θW ≤ ΛW , 0 ≤ θN ≤ ΛN , 0 ≤ θS ≤ ΛS

}
(3.44)

guarantees the positivity of both ρ and Γ1.

These limiters are then passed into an algorithm that modifies these limiters such

that p + Π positivity is guaranteed by [Λp
E,Λ

p
W ,Λ

p
N ,Λ

p
S]. The process closely follows

the 1D case; we let pn+1 + Πn+1 = Y (M(θE, θW , θN , θS)) and iterate through each

combination of limiters checking whether pn+1 + Πn+1 ≥ ε is satisfied. However, we
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now have fifteen different combinations to check. To this end, we define

A(k1,k2,k3,k4) = (k1ΛE, k2ΛW , k3ΛN , k4ΛS) (3.45)

where ki ∈ {0, 1} and (k1, k2, k3, k4) 6= (0, 0, 0, 0). Just as for the 1D case, for each A,

if Y (M(A(k1,k2,k3,k4))) ≥ ε, we take B(k1,k2,k3,k4) = A(k1,k2,k3,k4), else we solve for r such

that Y (M(rA(k1,k2,k3,k4))) ≥ ε and take B(k1,k2,k3,k4) = rA(k1,k2,k3,k4).

After solving for each of the fifteen B(k1,k2,k3,k4) at every cell in the grid, the

pressure limiters are assigned as

Λp
E = min

{
B

(1,0,0,0)
1 , B

(1,0,0,1)
1 , B

(1,0,1,0)
1 , B

(1,0,1,1)
1 , B

(1,1,0,0)
1 , B

(1,1,0,1)
1 , B

(1,1,1,1)
1

}
(3.46)

Λp
W = min

{
B

(0,1,0,0)
2 , B

(0,1,0,1)
2 , B

(0,1,1,0)
2 , B

(0,1,1,1)
2 , B

(1,1,0,0)
2 , B

(1,1,0,1)
2 , B

(1,1,1,1)
2

}
(3.47)

Λp
N = min

{
B

(0,0,1,0)
3 , B

(0,0,1,1)
3 , B

(0,1,1,0)
3 , B

(0,1,1,1)
3 , B

(1,0,1,0)
3 , B

(1,0,1,1)
3 , B

(1,1,1,1)
3

}
(3.48)

Λp
S = min

{
B

(0,0,0,1)
4 , B

(0,0,1,1)
4 , B

(0,1,0,1)
4 , B

(0,1,1,1)
4 , B

(1,0,0,1)
4 , B

(1,0,1,1)
4 , B

(1,1,1,1)
4

}
(3.49)

Finally, the overall, conservative limiters are locally taken to be

θ
i+

1
2
,j

= min
{

Λp
E,I ,Λ

p
W,I+1

}
(3.50)

θ
i−1

2
,j

= min
{

Λp
E,I−1,Λ

p
W,I

}
(3.51)

θ
i,j+

1
2

= min
{

Λp
N,I ,Λ

p
S,I+1

}
(3.52)

θ
i,j−1

2
= min

{
Λp
N,I−1,Λ

p
S,I

}
. (3.53)
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Chapter 4

Verification

This chapter is concerned with numerically verifying the methods previously de-

veloped. Convergence studies for two cases of scalar advection (both linear and non-

linear) are considered first. These examples are followed by several 1D numerical

problems designed to test specific features of the positivity-preserving method. Fi-

nally, two applications of 2D shock induced bubble collapse are presented.

4.1 Implementation

The finite difference WENO scheme along with the positivity algorithm were im-

plemented in the Python language for one and two dimensions. To enhance per-

formance, the code utilized the Numpy package, which greatly extends the compu-

tational capabilities of Python by introducing N -dimensional arrays and vectorized

operations [22]. Throughout the code, Numpy arrays were used exclusively, as the

native Python list object was found to provide detrimentally slow performance.

Several test problems were considered to rigorously verify accuracy and per-

formance of our proposed high-order positivity-preserving WENO finite difference

scheme. For all test problems, a standard 4th order Runge-Kutta time integration

was utilized. Additionally, the global Lax-Friedrichs flux splitting technique was em-

ployed for all problems. In most cases, the CFL number was set to 0.4; however, we

did find that some problems required a lower CFL (about 0.1) to run the 9th and

11th order schemes. These instances are noted.
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4.2 Scalar Conservation Laws

We begin by verifying the high-order convergence and maximum principle pre-

serving quality of the scheme for scalar conservation laws.

4.2.1 Linear Advection with Continuous Initial Data

We first consider the linear advection equation

∂u

∂t
+
∂u

∂x
= 0 (4.1)

with a smooth initial solution u(x, 0) = sin2(πx − sin(πx)/π) over the domain x ∈

[−1, 1]. Periodic boundary conditions are enforced, and the maximum time is set to

tmax = 20 corresponding to 10 full advections of the property u through the compu-

tational domain. The exact solution is

u(x, t) = sin2

(
π(x− t)− sin(π(x− t))

π

)
. (4.2)

Note that, in an effort to avoid polluting the spatial error with temporal error, we use

a very small CFL number (0.05) for this example. The results are tabulated in Table

4.1, where the L∞ error norms for two cases, with and without the positivity limiters,

are given along with the global minimum and maximum values obtained throughout

the numerical solution.

The effectiveness and accuracy of the positivity scheme are clearly demonstrated

in Table 4.1. For all simulations, the upper and lower bounds are preserved with no

observable impact upon accuracy. In other words optimal high-order accuracy and

maximum principle property are both preserved using our proposed scheme.
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Table 4.1: Convergence study for scalar linear advection — CFL=0.05

Without Limiters With Limiters

Order N Error min(u) max(u) Rate Error min(u) max(u) Rate

5 20 8.152e-02 -6.084e-03 1.001 9.317e-02 8.800e-17 1.000

40 2.211e-03 -9.728e-05 1.000 5.204 2.552e-03 9.926e-17 1.000 5.190

80 6.361e-05 -2.966e-06 1.000 5.119 7.466e-05 9.992e-17 1.000 5.095

160 1.998e-06 -9.281e-08 1.000 4.992 2.345e-06 9.999e-17 1.000 4.993

320 6.262e-08 -2.901e-09 1.000 4.996 7.347e-08 1.000e-16 1.000 4.997

640 1.958e-09 -9.065e-11 1.000 4.999 2.297e-09 1.000e-16 1.000 4.999

7 20 2.772e-02 -3.329e-04 1.001 2.947e-02 9.610e-17 1.000

40 2.402e-04 -1.377e-06 1.000 6.851 3.251e-04 9.987e-17 1.000 6.503

80 1.479e-06 -3.349e-09 1.000 7.343 1.492e-06 9.995e-17 1.000 7.768

160 9.797e-09 -2.290e-11 1.000 7.238 9.883e-09 9.999e-17 1.000 7.238

320 7.327e-11 -1.725e-13 1.000 7.063 7.392e-11 1.000e-16 1.000 7.063

9 20 8.687e-03 -5.520e-05 1.003 1.126e-02 1.033e-05 1.000

40 1.224e-05 5.464e-09 1.000 9.471 1.224e-05 5.464e-09 1.000 9.846

80 2.845e-08 5.543e-12 1.000 8.749 2.845e-08 5.543e-12 1.000 8.749

160 9.901e-11 5.346e-15 1.000 8.166 9.901e-11 5.346e-15 1.000 8.166

11 20 3.903e-03 -7.674e-05 1.002 6.955e-03 3.860e-05 1.000

40 1.465e-06 2.018e-10 1.000 11.4 1.465e-06 2.018e-10 1.000 12.2

80 1.650e-09 2.776e-14 1.000 9.794 1.650e-09 2.776e-14 1.000 9.794

4.2.2 Inviscid Burger’s Equation

Next, we consider the non-linear inviscid Burger’s equation

∂u

∂t
+

∂

∂x

(
u2

2

)
= 0

on the domain x ∈ [−1, 1] with tmax = 0.2 and the initial condition u(x, 0) = 1+sin(πx)
2

.

Once again, we use very small CFL number to avoid contaminating the convergence

rate with temporal error. Table 4.2 presents the L∞ error norms along with the

minimum and maximums values. Note that for fine meshes (N ≥ 320), the higher

order schemes give error values of the same order as the error associated with double

machine precision; these values are meaningless and are not reported.
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Table 4.2: Convergence study for Burger’s Equation — CFL=0.05

Without Limiters With Limiters

Order N Error min(u) max(u) Rate Error min(u) max(u) Rate

5 40 1.62e-05 -1.39e-06 1.00 1.72e-05 9.97e-17 1.00

80 5.41e-07 -4.61e-08 1.00 4.90 5.63e-07 6.61e-10 1.00 4.93

160 1.70e-08 -1.37e-09 1.00 4.99 2.11e-08 1.06e-11 1.00 4.74

320 5.34e-10 -4.05e-11 1.00 4.99 9.36e-10 1.67e-13 1.00 4.49

640 2.67e-11 -1.23e-12 1.00 4.33 5.19e-11 2.62e-15 1.00 4.17

7 40 2.37e-06 -1.90e-08 1.00 2.38e-06 9.98e-17 1.00

80 2.24e-08 -1.28e-10 1.00 6.72 2.25e-08 9.99e-17 1.00 6.73

160 1.82e-10 -9.70e-13 1.00 6.95 1.84e-10 8.28e-17 1.00 6.93

320 1.49e-12 -7.51e-15 1.00 6.94 1.67e-12 8.10e-19 1.00 6.78

9 40 5.55e-07 -1.36e-10 1.00 5.55e-07 9.99e-17 1.00

80 1.77e-09 -2.34e-13 1.00 8.30 1.77e-09 5.85e-18 1.00 8.30

160 3.97e-12 -4.34e-16 1.00 8.80 4.13e-12 1.75e-19 1.00 8.74

11 20 3.90e-03 -7.67e-05 1.00 6.95e-03 3.86e-05 1.00

40 1.47e-06 2.02e-10 1.00 11.4 1.47e-06 2.02e-10 1.00 12.2

80 1.65e-09 2.78e-14 1.00 9.79 1.65e-09 2.78e-14 1.00 9.79

These results confirm the high-order accuracy and maximum principle preserving

quality of the scheme for the non-linear case. For all orders and grid sizes, the scheme

without limiters obtained values below zero while the scheme with limiters always

remained positive.

4.3 Euler System

For the next set of test problems, we consider two challenging single fluid flow

problems that contain very large density and pressure ratios across sharp features.

For each of these problems, we found the positivity scheme a requirement to run the

simulation; without the flux limiting algorithm, the simulations crashed.
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4.3.1 Interacting Blast Waves

Here we simulate the collision of a Mach 199 shock wave with a Mach 63 shock

wave traveling the other direction. This is a modified form of the interacting blast

wave problem discussed in [54, 18]. Specifically, we have moved the two initial blast

waves much closer together to reduce the effects of numerical diffusion and preserve

the sharpness of the shock discontinuities at the collision. Owing to the large pressure

ratios across the shocks and the very low minimum pressure values, this problem is

designed to verify the preservation of pressure positivity. The domain is taken as

[0, 1] and the specific heat ratio is selected to correspond to air (γ = 1.4). The initial

data are

(ρ, v, p) =


(1, 0, 1000) 0 ≤ x < 0.6

(1, 0, 1
100

) 0.6 ≤ x < 0.7

(1, 0, 100) 0.7 ≤ x ≤ 1.

(4.3)

Figure 4.1 shows 11th order pressure solutions at various time steps. The first

panel shows the initial setup with the very large pressure discontinuities. Panel (b)

shows the two shock waves approaching each other and refraction waves propagat-

ing in the opposite direction, and in panel (c), the two shock waves have collided to

generate a very high pressure. Note how few grid points are contained within this

jump; for the 11th order solution, this feature is accurately captured by about five

grid points, demonstrating the high-order schemes’ ability to resolve extremely fine

features. In contrast, the first order scheme required about 10 times the grid resolu-

tion to approach the sharpness of the high-order solutions (this is further explored in

Figure 4.3). Panel (d) shows the leftward and rightward traveling shocks propagat-

ing after the collision into the air previously compressed by the wave traveling the

opposite direction. Finally, panel (e) shows the rightward traveling transmitted wave

overtaking the initial rightward traveling expansion wave.
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Figure 4.1: Pressure solutions for the interacting blast waves problem

The 7th order density solutions are shown in Figure 4.2 for the same time steps

as in Figure 4.1. The second panel shows the two shock waves traveling towards

each other, and the third shows the sudden density jump immediately following their

collision.
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Figure 4.2: Density solutions for the interacting blast waves problem

The fourth and fifth panels show the continued evolution of the complex post-

shock density profile. Note the sharp features present throughout the simulation; as

evidenced in Figure 4.3, the high-order schemes are able to effectively capture these

profiles while the lower order schemes require significant grid refinement to approach

comparable sharpness.
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A comparison of the 3rd, 5th, 7th, 9th, and 11th order density solutions at t =

5.25 × 10−3 is given in Figure 4.3. The solid black line is the “exact” converged

solution calculated using the 7th order scheme with 104 grid points. Clearly, the

3rd order solution fails to capture any of the sharp features. The 5th order solution

fares better, but it is noticeably less sharp than the higher orders, which are nearly

indistinguishable at this scaling. However, near the peak, it is clear that the 11th

order solution is indeed the sharpest.
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Figure 4.3: Comparison of high-order density solutions for interacting blast waves problem

This problem demonstrates the positivity -reserving quality of the scheme in the

presence of very large pressure jumps (of magnitude 105) from low pressure regions

(pmin = 0.01). Furthermore, it was found that for all high-order schemes, the posi-

tivity limiters were required to prevent the simulation from crashing due to negative

pressure thus demonstrating the necessity of the positivity algorithm.

4.3.2 Euler System — Shock, Interface Problem

Next, we consider the problem of a strong shock wave (M = 8.96) interacting

with a density interface. This problem is designed to test the ability of the algorithm
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to preserve the positivity of density in the extreme case of a very large density jump.

The shock is initially traveling rightward through helium (γ = 1.67) and is placed two

grid points away from the density interface. This is done to make the problem more

challenging by forcing the shock/interface interaction to occur before the effects of

numerical diffusion reduce the sharpness of the discontinuities. The initial conditions

are

(ρ, v, p) =


(0.384, 27.086, 100.176) 0 ≤ x < (0.5− 2h)

(0.1, 0, 1) (0.5− 2h) ≤ x ≤ 0.5

(100, 0, 1) 0.5 < x ≤ 1

. (4.4)

Figure 4.4 demonstrates the necessity for positivity limiters for this problem. This

figure shows a zoomed in view of the density interface after one time step for the 1st-

order solution along with two 5th-order solutions — one using the positivity limiters

and one without. The scheme with limiters maintains positive density, while the

standard scheme develops a negative density value prohibiting any further time steps.
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Using the positivity scheme, this problem has been solved for all orders. We

found that for 9th order and higher, a lower CFL number (CFL ≈ 0.1) was required;

however, both the 5th and 7th order schemes had no issue with the standard CFL=0.4.

Additionally, the 9th and 11th order solution suffered from some slight oscillations

at coarser grids. Solutions at t = 0.01 are presented in Figures 4.5, 4.6, and 4.7; the

black lines indicate the grid converged “exact” solution calculated using the 7th order

scheme with 104 points, and the dashed lines give the initial conditions.
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Figure 4.5: 5th order solution for shock air/helium interface problem

In the pressure trace, we observe the incident shock wave traveling rightward

through the high density region near x ≈ 0.55. Additionally, a reflected wave is

propagating leftward into the initial high pressure region near x ≈ 0.35. The density

jump observed immediately trailing the rightward traveling shock is the result of the

shock wave leading the advection of the initial density/temperature interface. Note

the increasing sharpness of this feature with approximation order.
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Figure 4.6: 7th order solution for shock air/helium interface problem
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Figure 4.7: 9th order solution for shock air/helium interface problem

To confirm the benefits of high-order schemes, Figure 4.8 compares high-order

solutions to a first order solution of comparable accuracy. The number of grid points

and CPU time for each scheme are shown in the legend. Clearly, the 5th order accurate

scheme outperforms the 1st-order scheme as it delivers a similar level of accuracy to

the first-order scheme at an approximately 34-fold reduction in CPU time.
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Figure 4.8: Comparison of high and low order solutions for shock interface problem

This test problem demonstrates the ability of the algorithm to successfully main-

tain positivity of density under very extreme conditions. Additionally, the signifi-

cantly greater efficiency of high-order schemes in the presence of sharp features is

demonstrated. As in the last test problem, the limiters were required for all orders

to solve this problem.

4.4 Two-Fluid System

The next two problems test the performance of the positivity scheme applied to

the two-fluid model.

4.4.1 High Pressure Shock Tube

To verify the positivity scheme in the presence of an interface between two vapors,

we solve a shock tube or Riemann problem consisting of very high pressure air sep-

arated from a volume of low pressure helium with both gasses initially at rest. The
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initial data are

(ρ, v, p,Γ,Π) =


(1, 0, 104, 1.4, 0) 0 ≤ x < 0.5

(1, 0, 1
100
, 1.67, 0) 0.5 ≤ x ≤ 1

. (4.5)

This problem has been solved for all orders with no observed CFL restriction.

Once again, it was found that the positivity scheme was required for all orders. All

attempts to solve the problem without the positivity algorithm resulted in negative

pressure values after the first time step. The solutions are shown in Figs. 4.10—4.13

with the “exact” solution calculated using a 7th order scheme with N = 5000 grid

points. The initial data are plotted as dashed lines.
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Figure 4.9: 3rd order solution to high pressure shock tube problem

The dynamics of the shock tube problem consist of a strong shock wave propagat-

ing rightward into the low pressure helium and a series of expansion waves traveling

leftward into the high pressure air. Both features are clearly seen in the pressure

trace. Another key component of the solutions is the high density, compressed he-

lium region between the shock front and the material interface defined by the specific
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heat ratio. As in the previous test problem, the increased sharpness of the higher

order schemes is most clearly observed near this feature.
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Figure 4.10: 5th order solution to high pressure shock tube problem
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Figure 4.11: 7th order solution to high pressure shock tube problem
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Figure 4.12: 9th order solution to high pressure shock tube problem

For the 9th and 11th order solutions, some oscillation can be observed near the

density peak trailing the shock wave and at other sharp features. These oscillations

diminish with grid refinement and do not impact the overall convergence of the solu-

tion. Similar behavior was observed by Gerolymos et al. [18] for their very high-order

accurate finite volume methods.
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Figure 4.13: 11th order solution to high pressure shock tube problem

This problem confirms the performance of the positivity method for a two-vapor
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interface separated by an inordinately large pressure ratio (106). No CFL restrictions

were encountered, as the problem was solved up through 11th order using the standard

CFL = 0.4.

4.4.2 Water and Air Shock, Interface Problem

Next, we verify the positivity-preserving performance for a two-phase problem.

The initial data consist of a region of quiescent air in equilibrium with water at

atmospheric conditions. A Mach 2.5 shock is propagating through the water and

impinges upon the interface. The water and air properties are chosen as

(ρ, v, p,Γ,Π) =


(1449 kg

m3 , 1281m
s
, 5.26× 109Pa, 4.40, 6.15× 108Pa) Post Shock

(998 kg
m3 , 0, 1.01× 105Pa, 4.40, 6.15× 108Pa) Pre Shock

(1.22 kg
m3 , 0, 1.01× 105Pa, 1.4, 0) Air.

(4.6)

The post shock conditions have been calculated using the Rankine-Hugoniot relations

for the stiffened gas equation of state derived in [27]. The computational domain is

[−1m, 1m], and the initial locations of the shock front and liquid/air interface are

selected as x = −0.1m and x = 0 respectively. The equation of state parameters for

water (γ and Π) have been chosen to coincide with the values presented in [42] for

the given Mach number regime.

In solving this problem, we found that some reduction in CFL was required for the

7th and higher order schemes. In particular, we used CFL=0.3 for 7th and 9th order

and CFL=0.21 for 11th order. Additionally, we found that the positivity limiters

were only required for the 7th and higher order schemes; both the 3rd and 5th order

schemes were able to provide solutions with CFL=0.4 without the limiters. The

11th and 5th order solutions for density, pressure and the two material properties are
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presented in Figures 4.14 and 4.15.
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Figure 4.14: 11th order solution to the shock liquid/air interface problem

The visible distinguishing features are the interface near x = 0.5 and the refraction

wave propagating leftward into the water. This expansion wave is the result of the

initial shock impinging upon the liquid/gas interface. Because of the scaling of the

problem, the actual shock front is not discernable; although a zoomed in view reveals

the shock propagating within the gas ahead of the interface near x = 0.8m.
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Figure 4.15: 5th order solution to the shock liquid/air interface problem
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Figure 4.16 depicts the material properties at the water/air interface for several

different solution orders. Clearly, the higher order methods capture the interface

more sharply; this is especially prominent for Π in which the lower order solutions

are notably less sharp on the right side of the discontinuity.
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Figure 4.16: Comparison of high-order solutions for specific heat ratio and Π for liquid/air
interface problem

These results demonstrate the positivity-preserving qualities of the scheme for

flows involving a liquid/vapor interface. This is an important test, as it forms the basis

for the 2D shock/bubble interaction problems involving gaseous bubbles immersed in

liquid. Using our scheme, we were able to solve this challenging problem to 7th, 9th,

and 11th order — which was not possible using the base scheme without limiters.

4.5 2D Two Fluid System

Having verified the positivity-preserving capabilities of our scheme for several

single and two-component flows in 1D, we now consider three problems using the

two-dimensional extension of the scheme.
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4.5.1 Isentropic Vortex

In order to verify the convergence of our two-fluid scheme, we begin by solving

for a stationary isentropic vortex where the field variables are defined on the domain

[−10, 10]× [−10, 10] as

vx = − ε

2π
exp

(
1− r2

2

)
y (4.7)

vy =
ε

2π
exp

(
1− r2

2

)
x (4.8)

ρ =

[
1− (γ − 1)ε2

8γπ2
exp(1− r2)

] 1
γ−1

(4.9)

p = ργ − Π (4.10)

where r2 = x2+y2, and ε is the vortex strength parameter. The ε = 5 with Π = 0 case

is commonly used in the literature [45, 13] to verify performance of high-order schemes.

Since taking ε = 9 generates very small pressure (pmin = 6 × 10−3) and density

(ρmin = 2 × 10−2) values, this case has been used to confirm positivity preservation

[44, 47, 56]. The fluid parameters are chosen as (γ = 1.4, Π = 0.1) to coincide with

[44]. Figure 4.17 provides a visualization of the field variables.

Figure 4.17: Initial density, pressure, and velocity fields for stationary isentropic vortex
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The results from the ε = 5 case are presented in Table 4.3. Here the L1 error

for density, pressure, and the sum of the conserved variables (density, momentum,

and total energy) are shown confirming the high-order convergence of our scheme.

It is important to note that in order to obtain the expected convergence rates, we

had to calculate all errors with respect to the finest grid resolution. That is, after

obtaining the solution on a course grid, we utilized repeated applications of the high-

order interpolation scheme outlined in Section 2.2 to obtain the solution on the finest

grid. Failure to do this yielded artificially low convergence rates.

Table 4.3: L1 convergence study for stationary isentropic vortex with ε = 5 and t = 0.1

Density Pressure Total

Order Resolution Error Rate Error Rate Error Rate

5 40× 40 3.84e-05 5.01e-05 3.67e-04

80× 80 1.49e-06 4.69 2.16e-06 4.54 1.34e-05 4.78

160× 160 4.75e-08 4.97 7.32e-08 4.88 3.40e-07 5.07

320× 320 1.37e-09 5.12 2.13e-09 5.11 1.05e-08 5.26

7 40× 40 1.75e-05 2.57e-05 1.86e-04

80× 80 2.92e-07 5.90 5.04e-07 5.67 3.00e-06 5.95

160× 160 2.95e-09 6.63 5.27e-09 6.58 2.58e-08 6.86

320× 320 2.25e-11 7.04 4.02e-11 7.04 1.66e-10 7.28

9 40× 40 1.01e-05 1.74e-05 1.26e-04

80× 80 9.32e-08 6.76 1.66e-07 6.71 1.05e-06 6.92

160× 160 2.92e-10 8.32 5.45e-10 8.26 2.73e-09 8.58

320× 320 5.93e-13 8.94 1.12e-12 8.93 4.44e-12 9.26

11 40× 40 7.00e-06 1.41e-05 9.71e-05

80× 80 3.71e-08 7.56 6.83e-08 7.69 4.53e-07 7.75

160× 160 3.75e-11 9.95 7.36e-11 9.86 3.90e-10 10.2

320× 320 2.05e-14 10.8 4.30e-14 10.7 1.69e-13 11.2

Table 4.4 shows the convergence results for ε = 9. In contrast to the ε = 5

case, the positivity limiters were were required to solve this problem for all orders.

Additionally, we observed that the flux-limiting algorithm for pressure outlined in Ref.
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[56] failed to maintain positivity beyond a few time steps. On the other hand, our

scheme with detailed steps in (3.46) — (3.49) performs flawlessly. In our algorithm,

we assign the limiter at each cell boundary using each of the seven B(k1,k2,k3,k4) values

that depend upon that cell boundary flux. In Ref. [56], only three B(k1,k2,k3,k4) values

for each limiter are considered. Using our method, we were able to run the isentropic

vortex problem with ε = 10 for longer than t = 14 without issue; however, using the

scheme in [56], the simulation obtained negative pressure values within a few time

steps, even with grid refinement and CFL reduction.

Table 4.4: L1 convergence study for stationary isentropic vortex with ε = 9 and t = 0.1

Density Pressure Total

Order Resolution Error Rate Error Rate Error Rate

5 40× 40 1.47e-04 2.14e-04 1.54e-03

80× 80 9.35e-06 3.98 1.33e-05 4.01 7.99e-05 4.27

160× 160 3.41e-07 4.78 5.22e-07 4.68 2.76e-06 4.86

320× 320 1.03e-08 5.04 1.61e-08 5.02 7.74e-08 5.16

7 40× 40 1.05e-04 1.47e-04 1.13e-03

80× 80 2.59e-06 5.35 4.25e-06 5.11 2.57e-05 5.47

160× 160 2.96e-08 6.45 5.77e-08 6.20 2.83e-07 6.50

320× 320 2.46e-10 6.91 4.82e-10 6.90 2.06e-09 7.11

9 40× 40 8.39e-05 1.15e-04 9.68e-04

80× 80 9.29e-07 6.50 1.92e-06 5.90 1.12e-05 6.43

160× 160 4.45e-09 7.71 9.26e-09 7.70 4.49e-08 7.97

320× 320 1.10e-11 8.67 2.17e-11 8.74 8.91e-11 8.98

11 40× 40 7.29e-05 9.66e-05 8.77e-04

80× 80 4.44e-07 7.36 1.02e-06 6.56 6.16e-06 7.15

160× 160 1.08e-09 8.68 1.91e-09 9.06 9.66e-09 9.32

320× 320 8.62e-13 10.3 1.36e-12 10.5 5.78e-12 10.7
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4.5.2 Air Shock Helium Bubble Interaction

The next test problem involves a Mach 1.22 shock wave impinging upon a cylindri-

cal bubble comprised of 78% helium and 22% air by mass suspended in a volume of air.

This particular problem has been experimentally studied [21] and thus provides an ex-

cellent case to quantitatively evaluate the scheme’s performance for multi-component

flows. The initial data are

(ρ, vx, vy, p,Γ,Π) =


(1.024 kg

m3 , 0, 0, 1.01× 105 Pa, 1.4, 0) Pre-shock

(1.658 kg
m3 , 114.49m

s
, 0, 1.59× 105 × 105 Pa, 1.4, 0) Post-shock

(0.22 kg
m3 , 0, 0, 1.01× 105 × 105 Pa, 1.64, 0) Bubble.

(4.11)

with a computational domain of [−222.5mm, 222.5mm] × [−445mm, 445mm]. The

initial shock front was placed at x = −0.01m, and the bubble center was located at

(−50mm, 0) with a radius of 25mm. The problem was solved for all orders with the

standard CFL=0.4, and in no cases were the flux limiters required.

Contour plots of the simulation are shown for density and pressure in Figures 4.18

and 4.19 respectively. The first panel visualizes the initial setup with the shock front

and bubble location being clearly seen in the density plot. The second panel shows the

bubble shortly after the shock first impinges upon the bubble. The density contour

reveals slight deformation in the upstream face of the bubble, and the refracted wave

can be faintly seen running through the bubble. In the pressure contour, the incident

wave front is clearly defined above and below the bubble, the refracted shock propa-

gating through the bubble is seen running ahead within the bubble, and a reflected

wave is seen traveling leftward.
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Figure 4.18: Air/helium shock bubble interaction — 11th order density solutions

To assess the accuracy of the scheme, the velocities of several prominent features

were calculated and compared to experimental [21] and numerical [45] data. The ve-

locities of the incident, refracted, and transmitted shocks (us, ur, and ut respectively)



76

were calculated by tracking the average distance traveled per time step of the shock

front along the center line (y = 0) over specific time intervals.

Figure 4.19: Air/helium shock bubble interaction — 11th order pressure solutions

The velocities of the upstream interface, downstream interface, and air jet (uui,
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udi, and uj, respectively) were calculated by tracking the left and right interface along

the center line. The results are tabulated in Table 4.5.

Table 4.5: Comparisons of shock/interface speeds [m/s] to numerical and experimental
data.

us ur ut uui udi uj
Time (µs) 0-60 70-110 120-300 70-110 200-400 200-400

11th order — Present Work (∆x = 742 µm) 441 958 413 179 147 221

9th order FD simulation (∆x = 278 µm) [45] 420 960 371 178 150 223

5th order FV simulation (∆x = 50 µm) [13] 420 945 379 173 145 230

Experiment [21] 410 ± 41 900 ± 90 393 ± 39 170 ± 17 145 ± 15 230 ± 23

To illustrate the various features measured in Table 4.5, Figure 4.20 shows nu-

merical Schlieren plots that provide clear visualization of wave fronts. To develop

these images, the process outlined by [39] is used. Specifically, the shading function

is defined as

φ = exp

(
−k |∇ρ|
|∇ρ|max

)
, (4.12)

where k=75 for helium and k=25 for air. To calculate the gradient terms, the high-

order finite difference scheme was used.

In Figure 4.20, the first panel shows the initial setup with the shock front and

bubble interface sharply defined. The second panel shows the shock shortly after

impinging upon the bubble. The shock front is seen as the thick vertical line near

x = −0.05m. Immediately to the right of the incident shock, the refracted shock

front is observed as the convex shape running ahead through the bubble cavity at

velocity ur ≈ 959ms−1, which is over twice the speed of the incident shock. Directly

to the left of the shock front, the reflected shock is seen traveling back into the

pressurized air. Also visible is the expansion wave traveling leftward behind the

initial shock location. The third panel shows the transmitted shock that has fully

traversed the bubble volume and continues to propagate into the air ahead of the

incident shock; additionally, the deformation of the upstream bubble interface is
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evident. The fourth and fifth panels mark the starting and stopping times used in

calculating the down stream interface and jet velocities. Note that the numerous

intersecting waves propagating from the top and bottom of the domain are the result

of the weak reflected waves re-entering the domain by way of the periodic top and

bottom boundaries.

Figure 4.20: Air/helium shock bubble interaction — numerical Schlieren
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4.5.3 High Mach Shock Air Bubble Interaction

The final test problem we solve is designed to verify the positivity-preserving

nature of the scheme for 2D, two-fluid compressible flow with both liquid and va-

por phases. Specifically, this simulation investigates the shock induced collapse of a

cylindrical air bubble immersed in liquid water. The initial data represent a Mach

1.9 shock wave propagating into a body of water containing a single air bubble at

atmospheric conditions. The initial field variables are defined as

(ρ, vx, vy, p,Γ,Π) =


(998 kg

m3 , 0, 0, 1.01× 105Pa, 6.68, 4050× 105Pa) Pre

(1231 kg
m3 , 600.3m

s
, 0, 1.9× 109Pa, 6.68, 4050× 105Pa) Post

(1.22 kg
m3 , 0, 1.01× 105Pa, 1.4, 0) Air.

(4.13)

The computational domain [−20mm, 20mm]× [−20mm, 20mm] is defined to be large

enough such that the incident/reflected waves never interact with the boundaries.

The bubble is centered at (3mm, 0) and radius is taken as R = 6mm to coincide with

the experimental and computational data of [6, 3, 51]. The incident shock front is

initially placed 1mm away from the left bubble interface at x = −1mm.

Figures 4.21, 4.22, and 4.23 show the 7th order density, pressure, and numerical

Schlieren fields at several different times to illustrate the flow evolution. Note that

all times are reported with t = 0 corresponding to the time the shock first encounters

the interface. This problem is unique in that it results in the development of negative

pressures (see 4th panel in Figure 4.22) thus testing the ability of the scheme to

maintain positivity of the so called modified pressure P + Π. The positivity limiters

were required to run this simulation; for all orders, the non-limiting scheme failed

regardless of the CFL and grid resolution used. Additionally, we found the very high-

order accurate (greater than 7th-order) schemes required interface smoothing of the

initial data to avoid oscillations at the interface, which caused positivity issues even
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with the limiters. Interestingly, of all the test problems we studied, the very high-

order accurate simulations of this problem were the only cases where the positivity

of the interface capturing function Γ1 was actually required.

Figure 4.21: Water/air shock bubble interaction — 7th order density solutions
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Just as in the previous problem (shock induced collapse of a helium bubble in

air), the initial interaction between the shock and bubble interface results in three

unique wave features. In the unperturbed regions above and below the bubble, the

shock front remains unchanged and continues propagating at the initial shock speed.

Within the bubble, a weak shock is transmitted through the air; this can be seen most

clearly in the 2nd and 3rd panels of Figure 4.21. Behind the bubble, an expansion

wave is reflected off the bubble surface and begins radially propagating upstream;

this wave front is clearly observed in the pressure contours (panels 1–5 of Figure

4.22). However, in contrast to the previous problem where the sound speed within

the bubble was less than in the surrounding fluid, this problem represents the opposite

case. In the 3rd panel of Figure 4.23, we observe that the incident shock leads the

transmitted shock. This coupled with the effects of the reflected expansion wave cause

the concave “bending” of the shock front.

In the 3rd panel of Figure 4.21, we can begin to see the early formation of a water

jet developing along the y = 0 line. At this point in the collapse, the jet is manifested

as a slight indentation at the center of the bubble’s deformed left face. This jet rapidly

cuts through the center of the air bubble in the 4th panel of Figures 4.21 and 4.23

and in the 5th panels, the water jet has completely severed the air bubble in half. A

shock wave resulting from this event is faintly seen propagating downstream in panel

5 of the numerical Schlieren contours.

In the literature, this event has been used to characterize the bubble collapse time.

Specifically, [6] defines the collapse time, τ , as the duration between the initial shock-

/interface interaction and the bubble splitting. In their experiments using high-speed

Schlieren photography, they found this time be about 3.5µs. The numerical studies

of [3, 51] measured this collapse time at 3.1µs and 3.0 µs, respectively, matching well

with our result of 3.0µs.
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Figure 4.22: Water/air shock bubble interaction — 7th order pressure solutions
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Figure 4.23: Water/air shock bubble interaction — numerical Schlieren

The evolution of the normalized bubble volume is presented in Figure 4.24. At

each time, the volume is calculated simply by summing the total number of cells

bounded by the bubble. The key feature to highlight in this plot is the linearity of

the bubble collapse. Both [3] and [6] observed that for a cylindrical bubble, volume
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ratio decreases linearly and that the collapse time, τ , marks the transition to a non-

linear regime. This trend is clearly observed in Figure 4.24.

Figure 4.24: Air bubble collapse history for water/air shock bubble problem

4.6 Impact on CPU Time

The impacts of the flux limiting process upon the overall CPU time of the scheme

are investigated. Table 4.6 shows the average CPU time per time step for our scheme

with and without the positivity algorithm. Results are given for both the helium/air

shock bubble problem (Section 4.5.2) and the liquid shock air bubble interaction

(Section 4.5.3). For the latter problem, negative density and modified pressure are

obtained after the first time step unless the limiters are used; thus, all reported CPU

times are based on the first time step. For all cases, the percentage difference was less

than 10%, so the overall impact of the positivity-preserving scheme for these problems

was minimal. For both orders, the difference between the two methods is larger for the

liquid shock air bubble interaction. This was expected as only the liquid/air problem

required the positivity limiters, which necessitate the additional step of solving for

the pressure limiters. However, it is important to note the overall number of time
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steps that demanded this additional computational expense was insignificant.

Table 4.6: Comparison of CPU cost per time step for scheme with limiters and without
limiters for (N,M) = (600, 150)

Helium/Air Water/Air

Order CPU Time [s] % difference CPU Time [s] % difference

5 With Limiters 6.04 6.06

Without Limiters 5.52 9.35% 5.53 9.71%

7 With Limiters 8.19 8.23

Without Limiters 7.67 6.91% 7.66 7.37%

For the 5th order simulation, only the very first time step resulted in the fluxes

being limited. This number increased to three during the 7th order simulation. Both

simulations ran for at least 800 time steps, so the number of steps that actually

demanded positivity preservation represents a very small percentage.
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Chapter 5

Conclusions

To summarize and conclude this thesis, we revisit the stated objectives and outline

the realization and contribution of each goal within this work.

5.1 Summary

The objectives for this thesis were enumerated in the introduction as follows:

• Implement the finite difference WENO scheme of Shahbazi [45] for the two fluid

model of (1.10) – (1.14) in one and two spatial dimensions up to 11th order.

• Apply the flux limiting positivity-preserving framework from [57, 56] to this

finite difference scheme in one and two dimensions.

• Verify the performance of the new positivity-preserving scheme.

The subsequent sections describe the realization of each stated objective.

5.1.1 First Objective

The finite difference WENO scheme of Shahbazi [45] was implemented to 11th

order for both one and two spatial dimensions using the Python programming lan-

guage. This code represents the first implementation of the scheme at 11th order

accuracy. Additionally, general relations were derived for the schemes’ interpola-

tion coefficients, optimal weights, and finite difference weights. A Python module

for calculating these parameters to arbitrarily high-order was developed, allowing for

relatively simple extension to even higher orders.
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5.1.2 Second Objective

A high-order flux-limiting, positivity-preserving technique was developed and ap-

plied to the finite difference method. The positivity-preserving algorithm is based

upon the methods of [57, 56] who worked exclusively within the framework of a 5th-

order flux reconstruction based WENO scheme. Since our finite difference scheme uses

the WENO reconstruction of primitive variables, their methods are not directly ap-

plicable to our work. The application of their flux-limiting technique to our primitive

variable based WENO scheme necessitated the reformulation of our high-order flux

terms into a compatible form thus representing a major contribution of this thesis.

Additionally, we found the truncated pressure limiter assignment procedure for the 2D

case as described in [56] failed for certain problems. The complete set of limiters we

present in (3.46)–(3.49) were found to guarantee positivity for all test problems. The

scheme developed herein is regarded as the first flux limiting scheme for orders higher

than five for single fluid compressible flow computations. For two-fluid compressible

systems, the developed solver is the first genuinely high-order positivity-preserving

finite difference scheme.

5.1.3 Third Objective

To confirm the high-order accuracy of the scheme, we conducted convergence stud-

ies for scalar linear advection, scalar non-linear advection, and two cases of the 2D

isentropic vortex problem. In all cases, we found the algorithm successfully main-

tained positivity (or maximum principle preserving for the scalar cases) without im-

pacting high-order convergence. To assess the effectiveness of the positivity algorithm,

we considered several challenging test scenarios with very large pressure and density

ratios coupled with large variance in equation of state parameters. For all of these

cases, the base high-order scheme without flux limiters crashed, while our new scheme

with limiters succeeded. These simulations verify the new scheme’s ability to preserve
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hyperbolicity with only a slight increase in computational cost (less than 10%). Fur-

thermore, positivity-preservation of the developed scheme is demonstrated for spatial

approximation orders as high as eleven.

5.2 Future Work

The rigor of the positivity limiters coupled with the intrinsic accuracy, simplicity,

and efficiency of the base finite difference scheme [45] lead to a high performing robust

method that lends itself well to further extension. Immediate next steps would involve

developing an efficient parallel implementation in the C programming language to

minimize run-time for computationally intensive simulations; this would prove an

essential step in applying the scheme to three spatial dimensions.

Other relevant future work includes the application of our scheme to mixture

theory models. Specifically, the general seven equation model described by [2] can

be reduced to a four equation Homogeneous Relaxation Model (HRM) [16] which

assumes constant temperature, pressure, and velocity across constituents. Of partic-

ular interest is the development of a positivity-preserving solver for this model. Such

a scheme would form the foundation for the extension to more complicated models

that include additional physics such as phase change, heat transfer, and viscous ef-

fects [38, 31]. Finally, the scheme can also be applied to Runge-Kutta schemes of

orders higher than four, which may yield higher efficiency when coupled with very

high spatial orders (e.g., 11th-order).
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